Ionic Liquids in the Biorefinery

Lecture 11 Biofuels and Bioproducts

Bronx Community College - 2017 Chemistry and BioEnergy Technology for Sustainability NSF ATE 1601636

Outline

- Lignocellulose Recalcitrance, Pretreatment Strategies and "Bio-manufacturing"
- Introduction to Ionic Liquids
 - Structures, pH, as biomass solvents
- Ionic Liquids in the Biorefinery
 - Significance and Challenges
 - Protic IL Distillation (thin film, PV)
 - Biochemicals/Bioproducts (chitin, lignin)
- Costs, Environmental Aspects and Critical Evaluation

The Lignocellulosic Substrate

Specific chemical composition varies between plant families (hardwood, softwood, grasses)

Generic Composition: 45% Cellulose 25% Hemicellulose 25% Lignin 5% Protein, Ash, Extractables

- Cellulose (hexose = glucose)
- Hemicellulose (pentose/hexose)
- Lignin (phenylpropanoid)

Image: Zhang. Green Chem 2016 (18) 360

- United States has 700M tons of non-food biomass/year¹
- 50% conversion of this material could replace 50 billion gallons of oil/year²
- Global market for petroleum-replacement chemicals estimated at \$500B³
- United States has committed to 36 billion gallons renewable fuel by 2020⁴

¹Klein-Marcuschamer et al. *Biofuels Bioproducts and Biorefining*, 2011. **5** (5): p. 562-569. ²BIO, Current uses of synthetic biology for renewable chemicals and biofuels (2013) ³Frank and Solomon

⁴U.S. Energy Independence and Security Act of 2007

George et al Biotech Bioeng 2014 111 Ro et al *Nature* 440, 940, 2016 Keasling J. *Nature Communications* 2011, 483

a "drop-in" gasoline replacement

Biomass Pretreatment

- Can be chemical, physical and/or biological
- Enhances extent and rate of enzymatic saccharification
- Impacts feedstock selection, handling and processing
- Pretreatment vessel composition and size
- Fermentation efficiency
- Enzyme loading and composition
- Waste disposal/water Use
- Opportunities to generate co-products

'Organosolv' Pretreatment

- Short-chain aliphatic alcohols, polyols, organic acids, acetone, dioxane, phenol, NMMO, 2Me-THF, Me-iBu-ketone, lonic Liquids (ILs)
- Can produce "high quality lignin" e.g. low sulfur, less condensed
- Higher dielectric constant of solvent = higher 'acid potential' for catalyst
- Other considerations = cost, ease of recovery, toxicology, safety, environmental impact
- Solvent viscosity and 'penetration' into substrate
- H-Bonding and Polarizability

Solvent Parameters

Substrate Solubilty:

- When δ is similar to the substrate, good dissolution is expected
- δ is not known for cellulose/lignocellulose
- δ is estimated at 22.5 for lignin
- Many of aforementioned organic solvents δ range is 17-27.

Solvent Reactivity (e.g. cellulose swelling):

- Measured empirically
- Calculated by multiple linear regression analysis
- Kamlet-Taft Parameters used for ILs

Hildebrand Solubility (
$$\delta$$
)
 $\delta = \sqrt{c} = \left[\frac{\Delta H - Rt}{V_{\rm m}}\right]^{1/2}$

c = cohesive energy density (MPa^{1/2}) Δ H = heat of vaporization (J mol⁻¹) R = gas constant (8.324 J K⁻¹ mol⁻¹) t = temperature (°C) V_m = molar volume of solvent (cm³ mol⁻¹)

Kamlet-Taft Polarity ()

Well correlated with Cellulose Swelling

Measurement:

- ILs and IL water mixtures are tested
- Reichardt's Dye and TMS references
- H-bond acceptor and donor solvents (below)

$$\gamma = \gamma_0 + s\pi^* + A\alpha + B\beta$$

 γ_o = regression value based on a reference solvent

- π^* = index of solvent dipolarity/polarizability
- $\alpha~$ = solvent hydrogen bond donor acidity
- β = solvent hydrogen bond acceptor basicity
- s, A, B = regression coefficients

Ionic Liquids vs. Molecular Solvents

- Billions of structures (compared to 10s)
- Virtually no vapour pressure, no boiling point
- Virtually non flammable
- Excellent thermal stability up to 300°C and more
- Catalytic and unusual solvation properties
- Extreme low compressibility
- No cavitation even at up to -1000 bar tension
- Corrosion: Analogy to inorganic salts falls short
- Nanostructural segregation, Magnetic properties
- Very small friction coefficients = good lubricants
- Electrical conductivity 50 mS/cm down to nearly zero
- Can have bacteriocidal and bacteriostatic properties
- Can have low toxicity

Ionic Liquids vs. Salts: Asymmetry Leads to Lower Melting Points (T_m)

Ionic Liquid Cations

Ionic Liquid Anions

 CO_2^{-}

-COO-

 $CH_3CO_2^-$

Organoaluminate Molten Salts Demonstrate the "Tunable" Relationship between IL Structure, pH and Viscosity

Cŀ

•

- Viscosity (V) and Melting Point (T) vary with mole fraction (X) of anion (AICl₃)

X (AICI₃)

AICI₃

CI-

- The same principals are used to prepare "task-specific" ionic liquids

 Important considerations for biomass pretreatment = pH, water miscibility, (ease of IL separation and purification)

Fannin et al J. Phys. Chem., 1984, 88, 2614–2621.

Anion Selection

Effect of Anion Pairings on Physical Properties of BzTEA ILs

Anion	Melting Point (°C)	Thermal Decomposition Temp (°C)	Miscible	Immiscible
DCA	83	236	water	EtOAc, hexanes, ether
SAC	151	209	water	EtOAc, hexanes, ether
TFA	-49	199	water, EtOAc	hexanes, ether
Tf ₂ N	-52	>300	EtOAc	water, hexanes, ether,
TfO	109	>300	water	EtOAc, hexanes, ether
	N ⁺ CN ^{-N⁻} NC	$\mathbf{F}_{3}\mathbf{C}$	$ \begin{array}{c} 0 \\ F_3C \\ 0 \\ F_3C \\ 0 \end{array} $	$O = S - O^{-1}$

BzTEA+

DCA⁻

SAC⁻

TFA⁻

Tf₂N⁻ TfO⁻

Bio-based ILs: Lipid-Like Cations Chain Length and Degrees of Unsaturation Effect T_m

Murray et al Angew Chem 2010 49 1-5

IONIC LIQUIDS for Cellulose Dissolution:

- Commonly imidazolium cations with 'coordinating' anions (H-bond acceptors, high β value)
- 5-25% cellulose dissolution obtained at 100°C
- Cellulose dissolution rate increased by MW heating
- Wood dissolves 2-10% at 130°C
- The presence of water in IL (even 1% w/w) decreases cellulose dissolution
- Dissolution offers potential for chemistry (e.g. acetylation, cellulose/lignin depolymerization)
- The science is not new...

Patented Jan. 9, 1934

1,943.176

UNITED STATES PATENT OFFICE

Swatlowski JACS Comm. 2002 Reddy S. African J Sci 2015 Plechkova and Seddon *Chem Soc Rev*, 2008

Cellulose Crosslinking via H-Bonding

Anion – Cellulose Interaction & Anti-Solvent Effects

- Following Pretreatment, water (or EtOH) are used as 'anti-solvent' to precipitate cellulose
- Cellulose has lost its crystallinity -> therefore more "accessible" to enzyme hydrolysis
- Depending on IL, Lignin and Hemicellulose can remained dissolved in IL
- Kosmotropic anions (e.g. phosphate, carbonate, sulfate) are "water structuring" and form aqueous bi-phasic (and tri-phasic) systems -> allows for less water consumption

Reddy, 2015 Brandt et al. Green Chem 12(4):672–679 Hauru et al. Biomacromolecules 13(9): 2896–2905. Parviainen A, et al. ChemSusChem 6(11):2161–2169.

A Typical IL Pretreatment Mass Balance

Forest Residues and Douglas Fir Woodchips (3 hr, 160°C, 10% solid loading)

Cellulose in

XRD shows loss of cellulose crystallinity

Figure 3 XRD patterns of samples used in this study and relative comparison with amorphous cellulose (Na CMC).

HSQC NMR shows bond-specific hemi-cellulose and lignin scission and stability

Socha. et al, Biotech for Biofuels (2013) 6, 61.

Cellulose Hydrolysis in IL

- $H_2SO_4 = HCI = HNO_3 > maleic > H_3PO_4$ in [BMIM] [CI]
- Acid : Cellulose mass ratio as low as 0.1 : 1
- Reducing sugar yields ~ 66-81%
- 100°C, 60 min
- Grasses and softwoods (pine)
- Monomeric sugar removal/separation from oligomers is challenging/costly

 H_2O

Problem is that strong acids will easily protonate strong bases of high β value ILs - so you can't have a "good cellulose dissolving IL" without it scavenging protons in your IL : acid mixture.

So why not use ILs all the time???

Ionic Liquid Toxicity & **Biodegradibility**

- introduction of long hydrophobic alkyl chains

TOXICITY

Not recommended

- intorduction of polar functional groups (e.g. ether, hydroxyl or nitrile functions) into side-chain

- use of pyridinium ILS

Not recommended -use of imidazolium ILs

Not recommended

organic acids

sulphates, alkyl

- fluorine-containing ionic liquid anions

sulphonatesalkyl benzene sulphonates, and salts of

Bubalo, et al. Ecotoxicology and Environ Safety 2014, 99, 1-12

Cholinium-Amino Acid based Ionic Liquids: Toxicity & Biodegradibility

[Ch][AA] + [BMIM] [BF₄] ILs Toxicity vs. Acetylcholineesterase

Entry	ILs	EC _{so} ±SD / µM
1	[Ch][Gly]	3830±170
2	[Ch][Ala]	3330±100
3	[Ch][Val]	3060±120
4	[Ch][Leu]	3360±50
5	[Ch][lle]	3570±70
6	[Ch][Ser]	3560±150
7	[Ch][Thr]	3450±150
8	[Ch][Met]	3130±140
9	[Ch][Asp]	3810±90
10	[Ch][Glu]	3720±70
11	[Ch][Asn]	3940±50
12	[Ch][Gln]	3510±160
13	[Ch][Lys]	3480±130
14	[Ch][His]	3630±40
15	[Ch][Arg]	3670±70
16	[Ch][Pro]	3370±160
17	[Ch][Phe]	2740±100
18	[Ch][Trp]	2450±20
19	[Ch][Cl]	3160±90
20	[Bmim][BF ₄]	330±10

Biodegradibility (%)

ILs	7 days	14 days	21 days	28 days
[Ch][Gly]	58.3±2.3	72.3±0.1	75.0±1.2	82.6±1.1
[Ch][Ala]	61.9±0.8	66.8±0.1	77.6±1.2	80.0±0.4
[Ch][Val]	49.6±0.1	61.3±0.8	65.6±0.5	69.4±0.6
[Ch][Leu]	46.3±0.8	68.5±1.6	70.7±0.9	72.4±0.1
[Ch][lle]	57.3±2.4	68.4±0.1	70.5±0.3	71.6±0.8
[Ch][Ser]	53.8±2.2	72.0±0.7	73.5±1.7	80.6±1.5
[Ch][Thr]	44.6±2.3	64.9±1.7	70.0±1.1	74.3±1.5
[Ch][Met]	54.3±0.3	63.7±0.1	64.7±0.3	66.1±0.9
[Ch][Asp]	68.9±1.2	79.5±0.6	86.5±0.5	87.1±0.6
[Ch][Glu]	70.0±0.1	71.3±1.1	83.1±1.4	86.3±0.2
[Ch][Asn]	53.9±0.5	71.8±1.1	85.7±0.7	87.1±1.2
[Ch][Gln]	58.5±2.3	80.5±0.7	83.8±1.5	86.6±1.4
[Ch][Lys]	54.4±3.7	62.4±0.4	65.9±1.0	67.7±1.0
[Ch][His]	46.5±3.5	60.1±1.2	63.4±0.0	65.3±1.3
[Ch][Arg]	59.6±2.3	62.3±0.9	65.3±0.1	67.6±0.2
[Ch][Pro]	58.0±0.9	66.4±0.1	68.5±0.9	71.3±0.1
[Ch][Phe]	44.0±0.2	68.8±0.2	71.0±1.1	70.8±0.1
[Ch][Trp]	55.1±1.1	60.2±0.6	62.7±1.1	65.9±0.2
[Ch][AcO]	46.7±0.4	63.6±0.8	66.5±0.5	68.1±1.9
Sodium benzoate	60.1±0.2	75.0±1.0	78.5±0.6	81.1±0.8

Xue-Dan Hou, PLOS one 2013, 8, 3, e59145

IL Toxicity and *in situ* Enzyme Hydrolysis

 IL Requirements = good cellulose dissolution, enzyme compatibility + low viscosity

 e.g. chloride, dicyanamide, formate, acetate (viscous and strong H bond acceptors) = incompatible with enzymes

- IL : water (1:4) has shown compatibility using [EMIM][DEP]
- Additives such as tris-(2hydroxyethyl)methylammonium methylsulfate have been shown to stabilize IL/enzyme mixtures to 120°C

The Bottom Line for Biofuels: IL Pretreatment and Lignin Prices

- 99.6% IL Recycling
- 10% solid loading

Different Types of Lignin have Different Values

Figure: Gosselink, 2011

Effect of IL Anion on Lignin

- ILs were used to treat technical lignins (organosolv, alkali, alkali low-sulfonate)
- Size reduction of lignin measured by SEC
- Size reduction hierarchy: Sulfates > lactate > acetate > chlorides > phosphates
- Different anions cleave different lignin linkages, e.g. β-O-4
- Organosolv > ALS > alkali for cleavage efficiency
- Organosolv lignin became more conjugated after IL treatment -> indicating strong nucleophilic destruction mechanism
- Much like the Kraft pulping process, the S anion is a strong nucleophile in sulfate ILs
- Cation has little effect on lignin cleavage

It is possible to use IL mixtures to control degree of lignin depolymerization

IL Recycling

- Bi-phasic systems are never completely biphasic
- IL recycling of 99.9% required for cost-effective IL use in a biorefinery
- Soluble Lignin other Solute Removal From ILs
 - 30kD polysulfone membrane filter
 - 1 MPa N₂, 20°C, overnight
- Pervaporation with fluoropolymer membrane (Compact Membrane Systems)
- Wiped Film Evaporation (Molecular Distillation)

Inspiration for Bio-Based ILs

Amino acid ionic liquids

K. Fukumoto, M. Yoshizawa, H. Ohno J. Am. Chem. Soc., 2005, 127, 2398-2399

Rodgers, R. Chemistry 2007 13, 24, 6817

Reviewed: Hulsbosch et al ACS Sust. Chem Eng 2016, 4, 2917-2931

Low Temperature Pretreatment Comparison (EMIM vs. Cholinium)

High β values, but no loss of cellulose crystallinity...

	π		α		β	
ILs	30 °C	90 °C	30 °C	90 °C	30 °C	90 °C
[C ₂ mim][OAc] [C ₂ mim][Lys] [Ch][Lys]	1.04 0.64 0.67	0.91 0.60 0.64	0.47 N/D ^a N/D ^a	0.51 N/D N/D ^a	1.14 1.28 1.30	1.23 1.29 1.31 ←
[Ch][OAc]	N/A^b	0.76	N/A^b	0.68	N/A	1.22

Lignin Removal as a Driver for Pretreatment Efficacy

Lysinate Anion is a very good "Lignin Remover" when paired with Cholinium or EMIM

Composition of pretreated biomass (%) Pretreatment T/t Solid recovery (%) Glucan Xylan Lignin ILS 37.5 ± 1.5 21.9 ± 2.0 18.9 ± 1.3 C₂mim OAc 17.1 ± 1.2 90/5 92.3 ± 5.7 38.0 ± 3.2 23.5 ± 3.3 C₂mim Lys 90/5 58.2 ± 0.2 65.2 ± 1.3 18.9 ± 0.6 6.4 ± 0.4 [Ch] Lys] 21.7 ± 0.2 70.7 ± 4.9 90/5 49.2 ± 0.9 8.2 ± 0.6 Ch OAc 90/5 87.2 ± 4.4 40.2 ± 2.4 24.7 ± 2.8 18.0 ± 1.3 C₂mim OAc 140/1 70.5 ± 0.3 50.0 ± 1.0 21.2 ± 1.1 13.7 ± 0.2 C₂mim Lys 140/1 50.8 ± 0.3 63.2 ± 0.1 17.2 ± 1.0 5.0 ± 0.9 [Ch] Lys] 140/1 56.6 ± 0.7 65.6 ± 3.6 23.9 ± 0.1 5.0 ± 0.1 [Ch][OAc] 140/1 66.7 ± 0.3 49.8 ± 1.8 20.8 ± 2.8 14.1 ± 1.0

Table 1 Compositional analysis after IL pretreatment

The "One Pot + High Gravity" Process

- [Ch][Lys] and [Ch][Asp] used as 10% aq solutions
- Pretreatment, Saccharification and Fermentation in One Pot
- IL is not removed or recycled (because it's inexpensive!)
- 30% biomass loading (corn stover)
- 75% yield of ethanol (on a glucose basis)
- 85% reduction in water input/wastewater
- 40% reduction in cost

Pretreatment of Switchgrass with Vanillin and Furfural Derived ILs

100

HTec2 enzyme per gram of raw biomass.

Homework Questions

- What are some <u>chemical considerations</u> when selecting an ionic liquid for pretreatment? How would you design a test?
- 2) What are key <u>engineering considerations</u> when selecting an ionic liquid for pretreatment?
- 3) What are key <u>cost considerations</u> when selecting an ionic liquid for pretreatment?