Advanced Biomolecules and Transformations in Industrial Biotechnology

Lecture 12 Biofuels and Bioproducts

Bronx Community College - 2017 Chemistry and BioEnergy Technology for Sustainability NSF ATE 1601636

Outline

- From biofuels to 'biorefining'
 - Biotech, BioEconomy, Value Chains
 - Commodity vs. Specialty Chemicals
 - Production Costs, General Considerations
 - NREL Report on Top Biomass Derived Commodity Chemicals
- Advanced Biomolecules
 - Natural Product Scaffolds
 - BioPolymers, Cell Free Syntheses

Slides and images adapted from: Industrialization of Biology: A Roadmap to Accelerate the Advanced Manufacturing of Chemicals © 2015 National Academy of Sciences

Biotechnology Addresses Global Challenges

- Energy Security
- Climate Change
- Sustainable
 Agriculture
- Environmental Sustainability (petroleum is a limited resource, sugar is not)

Biotechnology Can Reduce

- Toxic by-products from fossil fuels
- Green House Gas emissions
- Fossil fuel consumption in production of petroleum based chemicals

Biotechnology can Provide

- Lower cost production
- Increased production speed and capacity
- Flexibility of manufacturing plants
- Compared to traditional chemical synthesis or extraction from natural sources (e.g. taxol)
- Both HIGH VOLUME and HIGH VALUE CHEMICALS

The "Bio-Economy"

- The BIO-ECONOMY is all economic activity resulting from scientific research focused on biotechnology
- In 2012, U.S. bio-based product markets comprised 2.2% of GDP (\$353B)
- European BioEconomy = €2 trillion (21.5 million employees)
- Largely in Human Health and Agriculture
- Global Market for enzymes used in consumer Text products = \$8 billion Bioplast
- Global bio-based chemical and polymer production is estimated at 50 million tons/year
- Business-to-business revenues in U.S.
 estimated at \$125B in 2012 (\$66B in bio-based chemicals and \$30B in biofuels)
- Industrial Chemicals made through synthetic biology = \$1.5B market expanding at 15-25% annual growth rate for the foreseeable future
- This represents approximately 10% of chemical market

The Biomass Value Chain

val-ue chain: (noun) *"The process or activities by which a company adds value to a [good or service], including production, marketing and the provision of after-sales service"*

Bio-Economy Value Chains

NNFCC: The Bioeconomy Consultants

Ethanol Value Chain

The UK's National Centre for Biorenewable Energy, Fuels and Materials

Source: Nexant ChemSystems

Localized production can decentralize production processes and shift the value chain

val-ue chain: (noun) *"The process or activities by which a company adds value to a [good or service], including production, marketing and the provision of after-sales service"*

Start-Up and Commercial Biotech Companies

"Only 5% of the \$4 trillion global market of products made by chemical transformations have been addressed [by biological production]"

- Organization for Economic Co-operation and Development

Bridging the Gap: Biofuels and Bioproducts

- Biofuels must reach an "economy of scale"
- Reactors > 600 m³ (10⁶ fold scale up from lab)
- Choice of host and co-products are essential for a successful biorefinery

Biotechnology Companies

Percent gross profit margins obtained by selected biomanufacturing companies (2014) producing pharmaceuticals, industrial enzymes, high value oils and ethanol

Industrial Readiness and Feedstocks

- Current feedstocks = starch from corn and sugar cane
- Cellulosic biomass (present)
- Syngas, methane and CO₂ (future)

Commodity Chemicals

- Chemicals produced at a global scale (hundreds to billions of tons)
- Often low priced (~\$1-20/kg)
- Prices fluctuate daily in complex markets
 - <u>https://www.chemweek.com/CW</u>
 - <u>https://www.icis.com/</u>
- Approximately 50-100 commonly traded commodity chemicals including e.g. acetic acid, acetone, benzene, biodiesel, fatty acids, glycerol, hexane, methanol, polyethylene, phenol, sorbitol, water, etc.

Bio-Based Commodity Chemicals

- For chemicals less than \$20/kg market must be 1000 ton/year to justify production
- For chemicals of value of \$2-5/kg market must be 50,000 ton/year

General Process Considerations

- What are the chemicals to be produced?
- What is the target price of the finished chemical? (\$/kg)
- What is the target mass/volume? (metric tons/yr)
- What is the target feedstock, and cost to produce at a purity that works? (i.e. glucose from lignocellulosic pretreatment)

Specialty vs. Commodity Chemicals

SPECIALTY CHEMICALS

-Examples -Industrial enzymes -Pharma Intermediaries -Small volume -Small assets -Aerobic fermentation -High value add -High purity, high separations cost

LARGE-VOLUME CHEMICALS

- -Examples
 - -Biofuels
 - -Polymer intermediates
- -Moderate to large volume
- -Asset intensive
- Anaerobic and aerobic fermentation
- -Feedstock costs important
- -Large fermentation scale
- -Large volumes of water and cell-mass co-product

SHARED ENABLING SCIENCE AND ENGINEERING

Production Considerations

- Largest Production Cost = Feedstock and Capital Expenditure (CapEx)
 - Specialty chemical = 0.1-1 g/L-hr (reactor = \$200K/m³)
 - Commodity Chemical = 1-5 g/L-hr (reactor = \$50-100K/m³)
 - Corn EtOH 3-5 g/L-hr (reactor/plant = $\frac{57500}{m^3}$)
 - Chemical reactions (by comparison) = 30-50 g/L-hr
- Host Organism = most important determinant for economics.
 - Titer = Amount of product in unit volume (e.g. grams EtOH/Liter)
 - Rate = Titer in unit time (e.g. grams EtOH/L-hr)
 - Yield = grams EtOH/grams glucose equivalent

Fermentation

- Large capital expense
- Scale up ability is critical to project success
- Batch or Fed-Batch Mode (Current)
- Continuous Fermentation (Needed)
- Continuous Product Removal (Needed)
- Cell Free Processing (Needed)

Downstream Processing: Product Separation

- Filtration/Centrifugation of Cells
- Excretion of Product or Sonication of Cells
- Extraction (solvent or resin)
- Continuous removal of product 🙂
- Concentration/Purification of Product (distillation, chromatography...)
- Packaging (sterile vs. bulk)
- Costly steps, must be considered!

Top Value Added Chemicals from Biomass¹

- Produced from sugars via biological conversion
- Converted to higher-value chemicals or materials via chemical conversion
- This list was vetted by PNNL and NREL (from 300 candidate molecules) based on market, chemical properties/technical complexity and performance data

¹<u>http://www.nrel.gov/docs/fy04osti/35523.pdf</u> (2004)

Building Blocks
1,4 diacids (succinic, fumaric and malic)
2,5 furan dicarboxylic acid
3 hydroxy propionic acid
aspartic acid
glucaric acid
glutamic acid
itaconic acid
levulinic acid
3-hydroxybutyrolactone
glycerol
sorbitol
xylitol/arabinitol

Second Tier Group: gluconic acid, lactic acid, malonic acid, Propionic acid, citric acid, aconitic acid, xylonic acid, acetoin, furfural, levoglucosan, lysine, serine, threonine

Star Diagrams to Rank Derivatives

- Derivatives at points of the "star"
- Derivatives ranked by:
 - Replacement potential for currently used petrochemicals
 - Novel material and performance properties that would allow for new applications and/or create a new market segment

Circled derivatives = currently in commercial use *and* produced in commodity-scale volume

Applications, e.g.

- *1,3-propanediol* -> residential carpet (Sorona[™])
- acrylates -> nail polish, Plexiglas, house paints, superabsorbents (diapers), super glue, flocculation agent (water treatment)

BioPolymers

- Wide ranging applications (plastics, rubbers, fibers, paints, controlled drug release)
- Properties controlled by many variables (monomer structure and bonding between monomers, average MW/polydispersity, branching patterns
- Co-polymers have additional considerations (e.g. monomer arrangement)
- Polymerases make protein polymers (e.g. silks, wool, collagen)

BioPolymers Contd

- Ethylene has a huge market (140 million tons/yr) and can be made from ethanol
- Price of ethanol dependent on sugar price
- Butadiene (from 1,4-butanol, Genomatica), acrylic acid (Cargill), lactate (Myriant), isoprene (DuPont and Goodyear) are "in the pipeline"
- Polylactate (from lactic acid) many organisms convert glucose in near quantitative yields, bio-sourced, biodegradable polyester.
- Create your own! small changes to the monomer structure (e.g. stereochemistry, substitution patterns, spacing between functional groups can greatly influence polymer performance)

Polyhydroxyalkanoates (PHAs)

above made by engineered Bacillus subtilis below can be used in high value medical devices due to their biodegradable nature

Oils and Aromatics

- The NREL list only includes sugars and syngas, not lignin and oils
- Aromatics have a large commodity market for polymers and surfactants
- Polysaccharides (hemicelluloses) have potential markets in enhanced oil recovery and paper/metal finishing
- Oils have broad range of markets/applications
- Lignin can produce the entire family of aromatics that can not be made from oils or sugars

Chemistry for Consideration

- Milder oxidations, selective reductions and dehydrations
- Better control of bond cleavage
- Improvements to direct polymerization of multifunctional monomers
- Comprehensive database on biopolymer performance characteristics

Biology for Consideration

- Better pathway engineering of industrial host organisms
- Better understanding of metabolic pathways and cell biology
- Lower downstream recovery costs (of products)
- Increased utility of mixed sugar streams
- Improved enzyme thermal stability

Natural Product Scaffolds

Natural Product Analogs

- Variations in core structure
 - New chemical "handles" or linkage locations (e.g. halogens, aldehydes, amines) for downstream functionalization (semi-synthesis)

MBC vs. VRE = 29 μM

MBC vs. VRE = 0.91 μM

Polysaccharides

- Synthesis
 - Laborious protection/deprotection (traditional synthesis)
 - Regioselectivity
 - Glycosyl transferase enzymes can assemble
- Important modifiers of bioactive agents
 - Non-toxic, biodegradable and biocompatible
 - Drug delivery enhancement (e.g. tissue specificity, lower dosage requirements, improved encapsulation, hydrogels)
 - Diverse natural features (polyanionic, polycationic, sulfated and carboxylated)
 - Marine derived (algae, chitin)
 - Extend life of DNA and Protein therapeutics

Cell Free Approaches

- Pure enzymes can conduct single transformations (e.g. ketoreductases, esterases, peptidases, transaminases)
- Now only a few enzyme families can accommodate a wide range of substrates

