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ABSTRACT: The ability to rapidly assess and optimize
heterologous pathway function is critical for effective
metabolic engineering. Here, we develop a systematic
approach to pathway analysis based on correlations between
targeted proteins and metabolites and apply it to the
microbial production of isopentenol, a promising biofuel.
Starting with a seven-gene pathway, we performed a
correlation analysis to reduce pathway complexity and
identified two pathway proteins as the primary determinants
of efficient isopentenol production. Aided by the targeted
quantification of relevant pathway intermediates, we con-
structed and subsequently validated a conceptual model of
isopentenol pathway function. Informed by our analysis, we
assembled a strain which produced isopentenol at a titer
1.5 g/L, or 46% of theoretical yield. Our engineering approach
allowed us to accurately identify bottlenecks and determine
appropriate pathway balance. Paired with high-throughput
cloning techniques and analytics, this strategy should prove
useful for the analysis and optimization of increasingly
complex heterologous pathways.
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Introduction

Metabolic engineering has the potential to produce a large
variety of chemicals—many of which are currently derived
from limited resources—from simple, renewable starting
materials (Keasling, 2010). In the last decade, the heterolo-
gous over-production of pharmaceuticals, commodity
chemicals, alternative transportation fuels, and other natural
products in microbial hosts has been convincingly demon-
strated with a variety of pathways (Ajikumar et al., 2010;
Atsumi et al., 2008; Dellomonaco et al., 2011; Martin
et al., 2013; Peralta-Yahya et al., 2011; Ro et al., 2006; Yim
et al., 2011). Unfortunately, progress towards the large-scale
production of these compounds in microbial biorefineries
(Kamm and Kamm, 2004) has been slow. Although advances
in systems and synthetic biology have greatly expanded the
tools available to metabolic engineers (Boyle and Silver, 2012;
Mukhopadhyay et al., 2008), the identification of pathway
bottlenecks and establishment of appropriate pathway
balance remains challenging due to confounding factors
such as feedback regulation, product toxicity, and strain
instability. The continued development of systematic
methods to assess and engineer heterologous pathways
(Yadav et al., 2012) is necessary to address these challenges
and improve the efficacy of metabolic engineering.

The collection of metabolomics and proteomics data
provides essential insight into microbial metabolism and
complex physiological behavior. On the genome scale, large
sets of “omics” data have facilitated continued advances in
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systems biology and related disciplines. Unfortunately,
obtaining such information is generally time and resource
intensive. Since heterologous pathway optimization often
requires the generation of numerous pathway variants, the
collection of comprehensive metabolomics and proteomics
data is not always feasible. Consequently, analytical ap-
proaches that are rapid, selective, and easily accessible are
particularly valuable for pathway engineering. Selected
reaction monitoring (SRM) (Lange et al., 2008) for targeted
proteomics is one such method that has found use in
metabolic engineering efforts. Compared to traditional
shotgun proteomics, this method allows for more rapid,
reliable quantification of selected peptides in complex
mixtures. Recently, this technique was applied to the
heterologous mevalonate pathway in Escherichia coli to aid
in the identification of pathway bottlenecks based on poor
protein expression (Redding-Johanson et al., 2011). It was
shown that increased expression of mevalonate kinase (MK)
and phosphomevalonate kinase (PMK), two poorly-expressed
enzymes, facilitated a two- to threefold increase in the
production of amorphadiene, an antimalarial drug precursor.
Although this approach was successful in improving titer,
quantification of protein levels alone reveals little about
enzymatic activity or complex behaviors such as feedback
inhibition that are better elucidated by metabolite profiling.
Here, we develop a systematic approach to pathway

analysis and apply it to a modified mevalonate pathway
capable of producing isopentenol (3-methyl-3-butenol), a
potential biofuel (Chou and Keasling, 2012). Our approach
explores correlations between targeted proteomics data and
diagnostic metabolites to facilitate the rapid identification of
bottlenecks and potential engineering targets. Coupled with
the selective quantification of pathway intermediates, this
strategy is capable of providing comprehensive, quantitative
insight into pathway and strain behavior.

Materials and Methods

All chemicals, solvents and media components were
purchased and used without modification from Sigma-
Aldrich (St. Louis, MO), Fisher Scientific (Pittsburgh, PA), or
VWR (West Chester, PA) unless otherwise noted. E. coli
strains DH10B (Invitrogen, Carlsbad, CA) and DH1 (ATCC)
were used for plasmid construction and production experi-
ments, respectively. For targeted proteomics experiments, mass
spectrometric-grade trypsin was obtained from Sigma-Aldrich
and prepared according to manufacturer’s instructions.

Plasmid and Strain Construction

E. coli DH10B was used as the cloning host for all plasmid
manipulations. Plasmids were assembled based on the
BglBrick standard as described previously (Anderson et al.,
2010). The plasmid pBbA5c, a member of BglBrick plasmid
library (Lee et al., 2011), was used as the vector backbone for
mevalonate pathway genes up to PMK, while pTrc99Awas the
backbone for nudB and PMD. E. coli DH1 was used as the host

for production assays, while E. coli DH1(DE3) was the host
for plasmids which required T7 polymerase. Transformations
were performed using chemically competent cells. A
complete list of plasmids and strains is provided in Table I.

Growth Conditions and Production of Isopentenol

Starter cultures of E. coliDH1 harboring production plasmids
were grown overnight in LB medium containing appropriate
antibiotics at 37"C and shaken at 200 rpm in rotary shakers.
Chloramphenicol, ampicillin, and kanamycin were provided
at final concentrations of 25mg/L, 100mg/L, and 25mg/L,
respectively. Production assays were performed in EZ-Rich
defined medium (Teknova, Hollister, CA) containing 1%
glucose. Briefly, starter cultures were used to inoculate 5mL
of production media in a culture tube to an OD600 of 0.1.
Production cultures were grown in rotary shakers (200 rpm)
at 37"C to an OD600 of 0.6 and induced with 500mM
isopropyl b-D-1-thiogalactopyranoside (IPTG). Strains har-
boring pJBEI-6835 were also induced with 20mM arabinose.
Following induction, cultures were moved to 30"C for the
duration of the assay. At 24 and 48 h, samples were taken for
isopentenol analysis by GC-FID as described previously
(Chou and Keasling, 2012). For time course analyses, cultures
were grown in 50mL volumes in 250mL non-baffled
Erlenmeyer flasks.

Quantification of Glucose, Organic Acids, and Pathway
Intermediates

Glucose and organic acids were quantified in filter-sterilized
supernatant by high performance liquid chromatography
(HPLC) at set time points using an Agilent 1200 Series HPLC
system. Intracellular concentrations of mevalonate and IPP
were measured by liquid chromatography mass spectrometry
(LC-MS). Please see the Supplemental Methods Section for a
detailed description of metabolite quantification.

Targeted Proteomics Analysis

At 24 h, 2mL of production culture was collected and pelleted
by centrifugation at 8,000g (4"C). Supernatant was decanted,
and pellets were frozen in liquid nitrogen prior to storage at
#80"C. Sample preparation was performed as previously
described (Batth et al., 2012; Redding-Johanson et al., 2011).
For complete details, please see the Supplemental Methods
Section.

Correlation Analysis

A correlation analysis was performed to search for relation-
ships between measured variables. For Spearman rank
correlations (Myers and Well, 2003), values for protein
area and metabolite concentrations were ranked in ascending
order (i.e., the lowest value received a rank of 1). A scatter plot
comparing the ranks of two variables was generated to search
for monotonic relationships. Plots with raw data are provided
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as supplemental material. Spearman correlation coefficients
(r) were calculated between ranked variables (xi, yi) to
determine the degree of correlation according to the equation
below. Two-tailed P values are reported for significant
Spearman correlations.

r ¼
P

iðxi # !xÞðyi # !yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi # !xÞ2

P
iðyi # !yÞ2

q

Results

Engineering Strategy and Strain Construction

The heterologous mevalonate pathway in E. coli consists of six
reactions to convert acetyl-CoA to isopentenyl pyrophos-
phate (IPP), the universal precursor for isoprenoid com-
pounds. Co-expression of NudB, an endogenous E. coli
phosphatase, converts IPP into isopentenol. Previous work
on isopentenol production utilized a three-plasmid system:
pMevTand pMevB contained the top and bottom portions of
the mevalonate pathway, while a third plasmid expressed
NudB. In the initial demonstration of this pathway (Chou
and Keasling, 2012), yields of isopentenol were low ('8%
theoretical) and extensive pathway modification was not
attempted. To assess and engineer isopentenol pathway
function, we adopted the systematic strategy depicted in
Figure 1. The first step was the generation of pathway variants
that express different amounts of mevalonate pathway
proteins through changes in promoter identity, operon
organization, and codon-usage. For 3-hydroxy-3-methylglu-
taryl-CoA (HMG-CoA) synthase (HMGS), and HMG-CoA
reductase (HMGR), gene variants from Staphylococcus aureus
were also used. Next, strains expressing these differentially
expressed pathways were assayed for concentrations of
pathway proteins and selected metabolites. We quantified
glucose, acetate (an unwanted side product) and isopentenol
(the desired product). Following quantification, a correlation
analysis was performed to search for broad, monotonic
relationships between protein levels and the measured
metabolites to identify critical pathway components. Next,
diagnostic strains were selected to clarify these suspected
correlations. For these strains, glucose, acetate, isopentenol,
and pathway metabolites (mevalonate and IPP) were
quantified in a time-course to better understand the
dynamics of pathway function. Finally, a conceptual model
of pathway behavior was developed and validated with the
construction of additional strains.

We utilized a two-plasmid system for our engineering
efforts: plasmid 1 contained mevalonate pathway genes from
thiolase (atoB) to PMK on a medium copy BglBrick vector
(pBbA5c) (Lee et al., 2011), and plasmid 2 contained genes
encoding the phosphatase (nudB) and diphosphomevalonate
decarboxylase (PMD) on a high copy vector (pTrc99A; Amann
et al., 1988; Fig. 2). We chose this arrangement for PMD to
focus primarily on varied expression of MK and PMK, genes

Table I. Description of plasmids and strains.

Plasmids Descriptiona Reference

pJBEI-6818 pBbA5c-MevTo-MK-PMK This study
pJBEI-6819 pBbA5c-MevTo-PMK-MK This study
pJBEI-6820 pBbA5c-MevTo-T1002

-ptrc-MK-PMK
This study

pJBEI-6821 pBbA5c-MevTo-T1002
-ptrc-PMK-MK

This study

pJBEI-6822 pBbA5c-MevTco-MK-PMK This study
pJBEI-6823 pBbA5c-MevTco-PMK-MK This study
pJBEI-6824 pBbA5c-MevTco-T1002

-ptrc-MK-PMK
This study

pJBEI-6825 pBbA5c-MevTco-T1002
-ptrc-PMK-MK

This study

pJBEI-6826 pBbA5c-MevTco-T1002
-T7-MK-PMK

This study

pJBEI-6827 pBbA5c-MevTco-T1002
-T7-PMK-MK

This study

pJBEI-6828 pBbA5c-MevTco-rPMK-rMK This study
pJBEI-6829 pBbA5c-MevTsa-MK-PMK This study
pJBEI-6830 pBbA5c-MevTsa-PMK-MK This study
pJBEI-6831 pBbA5c-MevTsa-T1002

-ptrc-MK-PMK
This study

pJBEI-6832 pBbA5c-MevTsa-T1002
-ptrc-PMK-MK

This study

pJBEI-4574 pTrc99A-NudB Chou and
Keasling (2012)

pJBEI-6833 pTrc99A-NudB-PMD This study
pJBEI-6834 pTrc99A-NudB-PMD-MK This study
pJBEI-6835 pBbB8k-NudB This study
Strains
1A pJBEI-6818þ pJBEI-6833 This study
1B pJBEI-6819þ pJBEI-6833 This study
1C pJBEI-6820þ pJBEI-6833 This study
1D pJBEI-6821þ pJBEI-6833 This study
2A pJBEI-6822þ pJBEI-6833 This study
2B pJBEI-6823þ pJBEI-6833 This study
2C pJBEI-6824þ pJBEI-6833 This study
2D pJBEI-6825þ pJBEI-6833 This study
3A pJBEI-6829þ pJBEI-6833 This study
3B pJBEI-6830þ pJBEI-6833 This study
3C pJBEI-6831þ pJBEI-6833 This study
3D pJBEI-6832þ pJBEI-6833 This study
2A-T7 pJBEI-6826þ pJBEI-6833 This study
2B-T7 pJBEI-6827þ pJBEI-6833 This study
2B-rv pJBEI-6828þ pJBEI-6833 This study
1A-mk pJBEI-6818þ pJBEI-6834 This study
2A-mk pJBEI-6822þ pJBEI-6834 This study
3A-mk pJBEI-6829þ pJBEI-6834 This study
1A-NudB pJBEI-6818þ pJBEI

-6833þ pJBEI-6835
This study

2A-NudB pJBEI-6822þ pJBEI
-6833þ pJBEI-6835

This study

3A-NudB pJBEI-6829þ pJBEI
-6833þ pJBEI-6835

This study

1A-mk-NudB pJBEI-6818þ pJBEI
-6834þ pJBEI-6835

This study

2A-mk-NudB pJBEI-6822þ pJBEI
-6834þ pJBEI-6835

This study

3A-mk-NudB pJBEI-6829þ pJBEI
-6834þ pJBEI-6835

This study

aMevTo, E. coli atoB coupled with HMGS and HMGR from S. cerevisiae.
MevTco, E. coli atoB paired with E. coli codon-optimized HMGS and HMGR.
MevTsa, E. coli atoB paired with HMGS and HMGR from S. aureus. rPMK, PMK
with a variant ribosomal binding site. rMK, MK with a variant ribosomal
binding site.
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that were previously shown to limit sesquiterpene production
(Redding-Johanson et al., 2011). For the purposes of this
work, we designated atoB, HMGS, and HMGR as the
mevalonate-producing “top” of the pathway, while MK and
PMK comprised the mevalonate-consuming “bottom.”
Given the importance of pathway balance in metabolic

engineering, part of our strategy was to vary “top” and
“bottom” expression strength independently, combining a
particular flux to mevalonate with variable flux to IPP. To
achieve this goal, we initially created 12 plasmids that
combined three separate “tops” (1–3) with a range of atoB,
HMGS, and HMGR expression or activity with four “bottoms”
(A–D) with various levels of MK and PMK expression.
Additional variants constructed to probe MK and nudB
expression adhered to the organization described above. A
list of plasmids and strains used in this study is provided in
Table I.

Quantification of Isopentenol, Acetate, Glucose, and
Pathway Proteins

E. coli DH1 was transformed with each pathway variant and
assayed for isopentenol production at 24 and 48 h post-

induction. In addition, we quantified glucose, the primary
carbon source, and acetate, a competing product derived
primarily from acetyl-CoA (Fig. 2A), using a standard HPLC
protocol. Importantly, we also quantified pathway proteins at
24 h. The aggregate data set is shown in Figure 3A.
The engineered strains produced a range of isopentenol

titers, from '200 to 1,200mg/L (36% theoretical) at 48 h.
Even greater variation was observed in acetate secretion,
where concentrations ranged from <100mg/L at 48 h to
nearly 3 g/L. Substantial differences in glucose utilization
were also apparent: although some strains completely
catabolized the available glucose, others left up to 30% of
the initially added glucose remaining in the culture medium
at 48 h.
Pathway protein levels varied significantly between strains

with the exception of NudB and PMD, which were relatively
constant. Consequently, we anticipated that the wide
distribution in isopentenol titer, acetate, and glucose reflected
variability in the other five pathway proteins. Though protein
levels matched expectations in some cases, unexpected
variation in protein concentration was often apparent. For
instance, levels of AtoB variedmarkedly despite the conserved
identity of the gene, and the effects of switching MK-PMK

Figure 1. Engineering strategy as applied to isopentenol production in E. coli. Our approach centered on the use of proteomics-aided correlations to clarify pathway behavior.
The first step was the creation of pathway variants that expressed different amounts of pathway proteins through standard techniques. Next, strains expressing these variants were
assayed for pathway proteins along with glucose, acetate, and isopentenol. With quantification complete, a correlation analysis was performed to look for broad relationships
between pathway proteins and measured metabolites. With a general understanding of key pathway correlations, strains were carefully picked to further examine pathway
behavior in time-course experiments. Following themeasurement of mevalonate and IPP, we developed a conceptual understanding of pathway function that was validated with the
construction and analysis of additional strains.
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order differed depending on the upstream context. These
discrepancies highlight both the unpredictable, context-
dependent nature of gene expression (Mutalik et al., 2013)
and the value of proteomics as a diagnostic tool.

Correlation Analysis

We performed a simple correlation analysis to investigate
potential relationships between the measured parameters.
Given the presence of significant variation between variables—
and the unlikelihood of perfectly linear relationships—we
calculated Spearman rank correlation coefficients (r) to
search for broad, monotonic relationships between param-
eters (Myers and Well, 2003). Correlations discussed in
the main text are shown with raw data in . Following this
initial analysis, we aimed to clarify these relationships with
comprehensive metabolite data.

Without incorporating proteomics data, correlations
between the diagnostic metabolites were apparent. For

Figure 2. Pathway and strain organization. A: Isopentenol pathway. The
heterologous mevalonate pathway in E. coli consists of six reactions to convert
acetyl-CoA to IPP, the universal precursor for isoprenoid compounds. To produce
isopentenol (3-methyl-3-butenol), an endogenous E. coli phosphatase (NudB) is
expressed. B: Plasmid organization. A two-plasmid system was utilized for isopentenol
production. Plasmid 1 contained mevalonate pathway genes (atoB through PMK) on a
medium copy vector (pBbA5c, p15A ori) and plasmid 2 contained nudB and PMD on a
high copy vector (pTrc99A, pBR33 ori). Plasmid 1 contained one of 3 top portions (1, 2, 3)
coupled with 4 bottom portions (A, B, C, D). Top 1 consisted of original versions of
HMGS and HMGR from S. cervisiae, top 2 incorporated HMGS and HMGR codon-
optimized for E. coli, and top 3 used HMGS and HMGR from S. aureus. Bottom A
contained E. coli codon-optimizedMK and PMK in sequential order, B was the reverse
order (PMK-MK), C added an upstream trc promoter with MK-PMK, and bottom D
contained the same promoter with PMK-MK. Plasmid 2 remained constant.

Figure 3. Correlation analysis. A: Aggregate data set. Pathway proteins were
measured through a targeted SRM method at 24 h. Bovine serum albumin (BSA)
internal standards are also shown. At 24 and 48 h, isopentenol, acetate, and glucose
were quantified. Error bars represent standard deviations (n¼ 3). B: Acetate is
negatively correlated with isopentenol titer. A scatter plot comparing acetate
secretion and isopentenol production at 24 h by rank order resulted in a significant
negative correlation (r¼#0.83, P< 0.000001; n¼ 48). Individual replicates are shown
for each strain. C: Acetate is positively correlated with residual glucose. A plot of
acetate and glucose in the culture medium at 24 h yielded a positive correlation,
suggesting that acetate accumulation inhibits glucose catabolism (r¼ 0.75,
P< 0.000001) (n¼ 48). D: HMGS expression is negatively correlated with acetate
secretion. In strains containing yeast-derived HMGR and HMGS (tops 1 and 2),
increased HMGS expression was strongly correlated with decreased acetate
secretion (r¼#0.93, P< 0.000001) (n¼ 33). E: MK expression is positively correlated
with isopentenol titer in strains containing top 2. In strains containing top 2 only, there
was a strong positive correlation between increased MK expression and improved
isopentenol titer (r¼ 0.83, P¼ 0.000003; n¼ 21).
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instance, the accumulation of acetate was negatively
correlated with isopentenol titer (r¼#0.83, P< 0.000001;
Fig. 3B) and positively correlated with the presence of
uncatabolized glucose in the culture medium (r¼ 0.75,
P< 0.000001) (Fig. 3C). High-producing strains such as 2B
and 3A were characterized by low acetate accumulation and
complete glucose consumption, while low-producing strains
such as 1A accumulated acetate and residual glucose in the
culture medium.
We next tested whether a correlation analysis could

identify which proteins of the mevalonate pathway were
associated with the measured metabolites. For acetate
secretion, strong negative correlations with levels of AtoB,
HMGS, and HMGR were observed (Fig. S2). Since direct
comparisons between yeast-derived and S. aureus-derived
HMGS and HMGR were not possible, and since substantial
variation in top portion expression was not observed in
strains harboring S. aureus-derived genes, our primary
analysis made use of plasmids containing the yeast-derived
proteins (“top 1” and “top 2”). Intriguingly, the strongest
correlationwas withHMGS (r¼#0.93, P< 0.000001; Fig. 3D).
The apparent effects of this correlation were striking: the
strain with the highest HMGS protein level (19.54 relative
protein area) produced '24-fold less acetate at 24 h than
the strain with the lowest detectable protein level (2.69
relative protein area).
Correlations between protein expression and isopentenol

titer were more subtle and not immediately obvious from
bulk correlations (Fig. S3). By grouping strains into
comparable sets, however, stronger correlations were appar-
ent. With strains containing “top 2” (codon-optimized HMGS
and HMGR) a positive correlation between MK protein levels
and isopentenol titer was observed (r¼ 0.83, P¼ 0.000003;
Fig. 3E). Despite the significance of this correlation, strain
2D, which expressed the highest level of MK, produced less
isopentenol than strain 2C. This may have indicated an upper
limit to beneficial MK expression. However, a definitive
conclusion could not be reached since levels of HMGS in
strain 2D also decreased considerably. Concentrations of the
other pathway proteins also varied among strains, but
significant correlations with isopentenol titer were not
evident (Fig. S4).
Though a positive correlation between MK expression and

isopentenol titer was observed in strains containing “top 2,”
there was little evidence for similar correlations in strains
containing “top 1” and “top 3.” In strains 3A–3D, seemingly
small changes in protein expression resulted in significant
changes in isopentenol titer. Strains 3C and 3D, for instance,
produced fivefold less isopentenol at 24 h than strains 3A and
3B with only minor changes in protein levels. Intriguingly,
the strong correlation between HMGS levels and acetate
observed with the yeast-derived protein was also absent: a 10-
fold variation in acetate secretion occurred in strains 3A–3D
with only minor changes in HMGS levels. Since MK levels
gradually increased from strain 3A–3D, we suspected they
might be a potential cause of these behaviors, though
additional data were required to support this conjecture.

Strains 1A–1D appeared to show a similar trend whereby
introduction of a Trc promoter 50 ofMK and PMK (strains 1C
and 1D) led to reduced isopentenol production. However,
further analysis showed that strain 1C lackedMK protein and
strain 1D had undetectable amounts of mevalonate pathway
proteins from “plasmid 1” (Fig. 2B), suggesting unexpected
plasmid instability or recombination. As with strains 3A–3D,
additional data were necessary to determine the relationship
between MK expression and isopentenol titer.

Metabolite Analysis and Development of a Conceptual
Model

Our correlation analysis presented a simplified view of the
pathway. Though seven proteins comprised the functional
pathway, most behavior could be explained by variations in
HMGS and MK levels. Drawing on this information, we
conducted additional assays to clarify and validate these
correlations. Following the collection of metabolite data, we
aimed to develop a conceptual understanding of pathway
function.
We first sought to clarify the role of HMGS and other “top”

portion proteins in acetate secretion and glucose consump-
tion. While the correlation analysis established links between
these parameters, it was based on one or two time points. To
better understand the dynamics of these behaviors, we
quantified acetate, glucose, and isopentenol over a 48-h time-
course. We also quantified commonly excreted organic acids
such as lactate, pyruvate, and formate to further account for
carbon flow through central metabolism. Since we were
interested in observing the effect of each “top” in isolation, we
used strains with similar “bottom” protein levels. Conse-
quently, we chose to analyze strains 1A, 2B, and 3A, which
contained unique “tops,” but expressed similar levels of other
pathway proteins (Fig. 3A).
Total acetate accumulation decreased with improvements

in isopentenol titer, yielding clearly different product
profiles at the end of the fermentation (Fig. 4). Succinate,
formate, and pyruvate were detectable, but contributed little
to the aggregate extracellular carbon profiles. Similar to DH1
(Fig. 4A), strain 1A—characterized by low levels of HMGS—
accumulated acetate throughout the measured time-course
(Fig. 4B). Conversely, acetate was rapidly assimilated in
strain 2B, previously shown to express among the highest
concentrations of HMGS protein (Fig. 4C). In strain 3A,
acetate was assimilated at an intermediate rate compared to
strain 2B (Fig. 4D).
Glucose consumption generally improved with reductions

in acetate, underscoring the previously noted correlation
between these parameters (Fig. 3C). Strains 2B and 3A
consumed all available glucose by 36 h, while strain 1A left
over 2 g/L uncatabolized. Intriguingly, strain 1A consumed
even less glucose than DH1 despite accumulating 30% less
acetate at 48 h, suggesting that factors other than acetate were
partially responsible for this behavior.
We next quantified intracellular mevalonate and IPP,

products of the top and bottom pathway, respectively. In
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addition to determining the effect of HMGS expression on
mevalonate production, we also wanted to explore the impact
of MK expression on IPP concentrations. Accordingly, we
added strain 2B to the analysis. Proteomics measurements
showed that strains 1A and 2B differed primarily in levels of
HMGS, while strains 2A and 2B differed only in MK
concentrations. Thus, comparisons between these three
strains could clarify the effects of HMGS and MK in
isolation. We hypothesized that the prominent effect of
HMGS expression on acetate secretion (Figs. 3D and 4)
would be reflected in mevalonate production. Specifically,
strains with low acetate accumulation and high rates of
acetate assimilation would shunt more carbon into the
pathway, leading to high mevalonate concentrations. Given
the previously observed correlation between MK levels and
isopentenol titer, we suspected that MK was the primary
determinant of flux to IPP. Thus, we anticipated that
improved MK expression would yield increased concen-
trations of IPP in our analysis. In addition to mevalonate and

IPP, we measured cell growth, acetate secretion, glucose
production, and isopentenol titer to construct a more
complete model of isopentenol strain behavior (Fig. 5).

Quantification of mevalonate gave results consistent with
our predictions. Strain 1A expressed the lowest level of
HMGS and produced the least mevalonate, yielding concen-
trations of '4mM after 12 h. Strains 2A and 2B, containing
'6-fold higher levels of HMGS, yielded comparably high
mevalonate concentrations of 12–15mM. As predicted based
on rates of acetate assimilation (Fig. 4D), strain 3A produced
an intermediate amount of mevalonate.

IPP accumulated to high concentrations in all tested
strains, exceeding levels of mevalonate in most cases (Fig. 5).
As expected, increasing MK expression alone improved flux
to IPP: strain 2B, containing fourfold more MK than strain
2A, accumulated '100% more IPP and isopentenol with
nearly identical levels of other pathway proteins. Concen-
trations of mevalonate, however, were similar between strains
2A and 2B despite the disparity in MK protein levels.
Unexpectedly, strains 1A, 2A, and 2B accumulated high levels
of IPP prior to induction. Since levels of IPP/DMAPP were
negligible in DH1, it was unlikely that this was due to
endogenous E. coli metabolism. Intriguingly, strain 1A
produced the highest concentration of IPP despite yielding
the lowest concentration of mevalonate. SinceMK levels were
not particularly high in strain 1A, we hypothesized that this
inverse relationship between levels of mevalonate and IPP
could be explained by substrate inhibition of MK (Ma et al.,
2011). Given that excessive mevalonate inhibits MK, we
suspected that maintenance of a lower steady state
concentration may lead to increased flux to IPP as observed
in strain 1A.

Strain 1A produced the least isopentenol among tested
strains despite accumulating the highest concentration of the
precursor IPP. This suggested that excessive IPP might be
deleterious to isopentenol production or exert toxic effects.
Indeed, strain 1A exhibited reduced growth and glucose
consumption relative to DH1 (Fig. 5). Although these data
were suggestive, further investigation was necessary to
definitively implicate IPP as a cause of this phenotype.

Conceptual Model Validation

We hypothesized that high HMGS expression directed more
carbon into the mevalonate pathway, preventing excess
acetate accumulation and leading to high concentrations of
mevalonate. In this scenario, subsequent inhibition of MK
attenuated flux to IPP and limited isopentenol production.
Low HMGS expression resulted in higher acetate accumula-
tion and lower steady state concentrations of mevalonate.
Counter-intuitively, this appeared to lead to increased
downstream flux to IPP, which was toxic at high concen-
trations. Strains that balanced mevalonate production and
consumption were characterized by low acetate accumula-
tion, intermediate flux to IPP, and high isopentenol yields.
This conceptual understanding of pathway function is
applied to strains 1A, 2A, and 3A in Figure S5.

Figure 4. Organic acid analysis. Cultures of wild-type DH1 (A), strain 1A (B), strain
2B (C), and strain 3A (D) were grown in 50mL volumes of EZ-Rich 1% glucose in 250mL
non-baffled Erlenmeyer flasks at 30"C (200 rpm). Line graphs show the results of a
fermentation time-course. Extracellular concentrations of acetate, pyruvate, lactate,
succinate, formate, and isopentenol were measured on the left axis (mM) while
glucose concentrations are represented on the right (mM). Pie charts show measured
extracellular product profiles at the end of the fermentation run in Cmol/L and thus
account for differences in carbon content. Note that these profiles compare measured
products only and do not constitute a total carbon inventory. Metabolites are colored
according to the legend at right.
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To evaluate our model, we compared strains 1A, 2A, and
3A with versions engineered to express substantially more
MK protein (strains 1A-mk, 2A-mk, and 3A-mk; Fig. 6A). In
strains 1A-mk and 3A-mk, we anticipated that MK over-
expression would exacerbate the already high flux to IPP,
reducing isopentenol titer due to IPP toxicity. In strain 2A-
mk, we hypothesized that substrate inhibition of MK would
prevent deleterious IPP accumulation, and thus MK over-
expression would yield improvements in isopentenol titer.
Since we expressed the additional copy of MK on plasmid 2,
we anticipated that protein levels from plasmid 1 would be
unaffected. An analysis of protein levels in strain 2A-mk
revealed minimal changes in pathway proteins compared to
strain 2Awith the exception of MK, where an approximately
50-fold increase in protein expression was observed
(Fig. S6). Isopentenol titer was significantly reduced in
strains 1A-mk and 3A-mk relative to strains 1A and 3A,
respectively (Fig. 6A). Strain 3A-mk yielded similar amounts
of isopentenol as strains 3C and 3D, supporting our previous
identification of increased MK expression as a primary cause
for reduced titer in these strains. Matching expectations,
deleterious effects on titer were absent in strain 2A-mk. Titers
at 48 h reached '700mg/L, a 40% improvement over strain
2A, but a significant reduction compared to strain 2B.
Quantification of mevalonate and IPP yielded trends

generally consistent with our conceptual model. In all strains
with additional MK, a massive increase in IPP accumulation

was observed (Fig. 6A). As anticipated, IPP accumulationwas
highest in strain 1A-mk, the strain predicted to have the
largest imbalance between HMGS and MK expression, and
second highest in strain 3A-mk. Although IPP still
accumulated to high levels in strain 2A-mk, concentrations
were threefold lower than in 1A-mk. IPP concentrations were
highest at 6 h and rapidly declined in strains 1A-mk and 3A-
mk. In strain 2A-mk, the decline in IPP was more gradual.
Significant growth defects were present in each strain that

expressed a supplemental copy ofMK (Fig. 6B). In strains 1A-
mk and 3A-mk, reductions in growth rate were correlated
with spikes in IPP. Surprisingly, growth recovered almost
immediately following the disappearance of IPP. In strain 2A-
mk, the initial impact of IPP accumulation on growthwas less
severe, but growth remained repressed longer in accordance
with the more gradual decline in IPP levels in this strain.
Glucose catabolism was also significantly reduced during
periods of IPP accumulation (Fig. 6C). As with growth,
glucose consumption rapidly resumed following a drop in
IPP levels.
The toxicity of IPP at high concentrations suggested that

NudB was limiting isopentenol yields in some strains. To
determine if increased NudB expression could reduce IPP
accumulation and improve production, we introduced a
third plasmid containing nudB driven by an arabinose-
inducible promoter into selected strains. Supplemental NudB
expression relieved the growth inhibition present in strains

Figure 5. Conceptual model of pathway function. Strains 1A, 2A, 2B, and 3A were analyzed for glucose, growth (dotted lines in glucose panel), acetate, mevalonate, IPP, and
isopentenol over 48 h. Strains are color-coded according to the legend on the left. DH1 levels of growth, glucose, and acetate production are shown as markerless black lines
(growth is shown as a dotted line). DH1 levels of mevalonate, IPP, and isopentenol are not displayed as they were below detection level. Proteomics data are presented above the
pathway. Error bars represent standard deviations (n¼ 3). Note that HMGS in strain 3A (() is derived from S. aureus and thus protein levels are not directly comparable to HMGS in
strains 1A, 2A, and 2B. According to our conceptual model, strain behavior is determined primarily by expression of HMGS andMK proteins (in red). Suspected inhibitory effects are
shown as solid lines in red.
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1A-mk, 2A-mk, and 3A-mk (Fig. 7A), providing evidence
that higher NudB expression resulted in decreased IPP levels.
In all tested strains, increased NudB expression resulted in
higher isopentenol titer, though the degree of improvement
varied substantially (Fig. 7B). In strain 3A-NudB, additional
phosphatase expression yielded a 30% increase in isopentenol
titer to 1.5 g/L.More significant improvements were observed
in strains that accumulated high amounts of IPP: expression
of additional NudB protein in strain 3A-mk-NudB yielded a
sixfold increase in titer relative to strain 3A-mk. Quantifica-
tion of residual glucose (Fig. 7C) and acetate (Fig. 7D) in
these strains provided further support for the primary role of
HMGS in the secretion of acetate and subsequent inhibition
of glucose catabolism. Although NudB levels changed
significantly, all strains containing “top 1”—characterized
by low HMGS levels—accumulated acetate and residual
glucose after 48 h. Conversely, expression of additional NudB
in strains 2A-mk-NudB and 3A-mk-NudB resulted in
complete glucose consumption, implying that IPP rather
than acetate was chiefly responsible for inhibiting glucose
catabolism in these strains. Intriguingly, strains 2A-mk and
3A-mk accumulated significantly more acetate than strains
2A and 3A, suggesting that IPP may also impact acetate
secretion. Though we identified IPP as a cause of toxicity in

Figure 6. Model validation and identification of IPP toxicity. A: Impact of supplemental MK. Strains engineered to express high levels of MK (þmk, shown as dotted lines) were
assayed for mevalonate, IPP, and isopentenol over a 48-h time course. Original strains are shown as solid lines for comparison. Strains are color coded according to the legend at
right. Error bars represent standard deviations (n¼ 3). B: IPP inhibits cell growth. Spikes in IPP accumulation (dotted lines) aligned with reductions in cell growth measured as
OD600nm (solid lines). Strains are color coded according to the legend at right. Error bars represent standard deviations (n¼ 3). C: IPP inhibits glucose consumption. IPP accumulation
(dotted lines) appeared inhibitory to glucose consumption (solid lines). Strains are color coded according to the legend at right. Error bars represent standard deviations (n¼ 3).

Figure 7. Impact of supplemental NudB expression. Strains 1A, 2A, 3A, 1A-mk,
2A-mk, and 3A-mk (in blue) were assayed for growth (A), isopentenol (B), glucose (C),
and acetate (D) alongside strains engineered to express additional NudB protein
(þNudB, in green). Error bars are standard deviations (n¼ 3).
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our engineered strains, additional experiments are clearly
required to better understand the impacts of IPP accumula-
tion on both the mevalonate pathway and endogenous E. coli
metabolism.

Discussion

The strongest correlation in our analysis was a negative
relationship between HMGS protein levels and secreted
acetate. Since the shunting of acetyl-CoA into the mevalonate
pathway is initially mediated by AtoB, this dependency on the
second reaction (the conversion of acetoacetyl-CoA into
HMG-CoA) may reflect differences in reaction kinetics.
Although the AtoB-catalyzed conversion of acetyl-CoA into
acetoacetyl-CoA proceeds first, this reaction is highly
reversible (Duncombe and Frerman, 1976). Consequently,
it is likely that some carbon that initially enters the pathway is
converted back to acetyl-CoA and thus available for
conversion to acetate. In this scenario, the conversion of
acetoacetyl-CoA to HMG-CoA by HMGS represents the first
committed step in our synthetic pathway, “trapping” the
carbon and thus preventing the formation of acetate. The
accumulation of acetate has been previously identified as a
major carbon sink in engineered pathways and a potential
cause of acid stress, reduced growth, and impeded carbon
utilization (Wolfe, 2005). Not surprisingly, acetate was
correlated with reduced isopentenol production (Fig. 3B)
and decreased glucose utilization (Fig. 3C) in the present
study. Though acetate formation may be blocked through
changes in host genetics (De Mey et al., 2007), these
manipulations often have deleterious effects on cell growth or
viability. In the current work, acetate accumulation was
avoided through simple changes in pathway protein levels,
highlighting the importance of pathway balance and the
strong relationship between pathway architecture and strain
behavior.
The correlation between increased MK expression and

improved isopentenol yield supports a previous analysis that
identified poor expression of this enzyme as a potential
bottleneck in sesquiterpene production (Redding-Johanson
et al., 2011). In the previous study, however, both MK and
PMK were implicated on the basis of poor expression. Our
correlation analysis allowed us to definitively identify MK as
the primary determinant of downstream flux to IPP. More
importantly, our analysis revealed that the effect of increased
MK varies significantly depending on pathway context:
increased MK expression was only beneficial in strains
containing “top 2,” where high HMGS expression resulted in
greater flux to mevalonate and attenuated MK activity
through substrate inhibition. Suggestively, mevalonate
accumulated to '15mM in these strains, a concentration
shown to reduce MK activity by 30–40% in in vitro studies
(Ma et al., 2011). In strains containing “top 1” and “top 3,”
mevalonate accumulated to concentrations that resulted in
significantly higher MK activity. Accordingly, increasing MK
expression in these strains led to substantially reduced titer
due to IPP accumulation and toxicity.

Reductions in growth and glucose consumption were
evident in strains that accumulated high levels of IPP.
Intriguingly, IPP levels rapidly decreased following peak
accumulation, resulting in the resumption of glucose
consumption and restoration of growth. It is unclear if
this rapid drop in intracellular IPP concentration is due to
cell lysis, conversion to longer chain terpenes, or another,
uncharacterized response. Though previous studies have
implicated prenyl diphosphate accumulation as a cause of
reduced growth (Martin et al., 2003; Sivy et al., 2011;
Withers et al., 2007), the mechanism of IPP-related toxicity
is currently unknown. The strong correlation between
glucose consumption and IPP suggests that glucose uptake
may be inhibited, though this may be a nonspecific
consequence of reduced membrane integrity or inhibited
cell metabolism. Further investigation to interrogate
membrane integrity is an important first step towards
addressing this uncertainty. Increasing NudB expression
facilitated an improvement in isopentenol titer and partially
relieved IPP toxicity. Although NudB was identified as a
probable bottleneck based on metabolite data, our proteo-
mics correlation data offered an explanation for the
differential effects of NudB overexpression. Given the
correlation between HMGS expression and acetate, strains
with low HMGS lost substantial carbon to acetate regardless
of downstream flux to IPP and isopentenol. This likely
caused the low isopentenol titer in strain 1A-NudB, a strain
that might be expected to produce the highest titers of
isopentenol based solely on pathway flux to IPP. According
to our analysis, a delicate balance between pathway “pull,”
acetate secretion, and downstream flux to IPP is necessary
to attain the highest isopentenol titers.
With a properly balanced pathway, 1.5 g/L of isopentenol

was produced at 46% theoretical yield. This represents a
fivefold improvement over the original pathway (Chou and
Keasling, 2012) and a greater than threefold improvement
over more recent work (Zheng et al., 2013) (Fig. S7). More
importantly, we achieved a more complete understanding of
pathway function that will inform future engineering efforts.
Although our approach is similar to multivariate modular
metabolic engineering (Yadav et al., 2012; MMME), there are
clear advantages to our methodology. In MMME, pathways
are first reorganized into “modules” to allow for the simple
titration of expression levels between each synthetic operon.
In the current strategy, the expression of each individual
protein, rather than each “module,” is used in a correlation
analysis. This allows for a more extensive assessment of the
pathway, revealing the impact of individual genes on overall
pathway function. Though we performed the current work
with a relatively modest number of strains and pathway
variations, this method should be easily paired with
techniques for high-throughput strain construction (Engler
and Marillonnet, 2011; Engler et al., 2008; Quan and Tian,
2011). As the ability to monitor increasing numbers of
proteins or metabolites also improves, future applications of
this strategy should allow for the analysis and clarification of
increasingly complex metabolic pathways.
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