# Polar Covalent Bonds: Acids and Bases



# Topics

Part 1: Polarity, Electronegativity and Dipole Moments Polarity Applied Formal Charges Resonance (Rules and Forms) Part 2: Bronsted-Lowry Acids & Bases

Acid Base Strength

Predicting Acid Base Reactions from pKa Values

Organic Acids and Bases

Lewis Acids and Bases

Non-covalent interactions between molecules

| <b>H</b><br>2.20        |                         |                                                                      |                         |                        |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
|-------------------------|-------------------------|----------------------------------------------------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 3<br><b>Li</b><br>0.98  | 4<br><b>Be</b><br>1.57  | 456789BeCNOF1.57Pauling Electronegativity Values2.042.553.043.443.98 |                         |                        |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 11<br><b>Na</b><br>0.93 | 12<br><b>Mg</b><br>1.31 |                                                                      |                         |                        |                         |                         |                         |                         |                         |                         | 13<br><b>Al</b><br>1.61 | 14<br><b>Si</b><br>1.90 | 15<br><b>P</b><br>2.19  | 16<br><b>S</b><br>2.58  | 17<br><b>Cl</b><br>3.16 |                         |
| 19<br><b>K</b><br>0.82  | 20<br><b>Ca</b><br>1.00 | 21<br><b>Sc</b><br>1.36                                              | 22<br><b>Ti</b><br>1.54 | 23<br><b>V</b><br>1.63 | 24<br><b>Cr</b><br>1.66 | 25<br><b>Mn</b><br>1.55 | 26<br><b>Fe</b><br>1.83 | 27<br><b>Co</b><br>1.88 | 28<br><b>Ni</b><br>1.91 | 29<br><b>Cu</b><br>1.90 | 30<br><b>Zn</b><br>1.65 | 31<br><b>Ga</b><br>1.81 | 32<br><b>Ge</b><br>2.01 | 33<br><b>As</b><br>2.18 | 34<br><b>Se</b><br>2.55 | 35<br><b>Br</b><br>2.96 |
| 37<br><b>Rb</b><br>0.82 | 38<br><b>Sr</b><br>0.95 | 39<br><b>Y</b><br>1.22                                               | 40<br><b>Zr</b><br>1.33 | 41<br><b>Nb</b><br>1.6 | 42<br><b>Mo</b><br>2.16 | 43<br><b>Tc</b><br>1.9  | 44<br><b>Ru</b><br>2.2  | 45<br><b>Rh</b><br>2.28 | 46<br><b>Pd</b><br>2.20 | 47<br><b>Ag</b><br>1.93 | 48<br><b>Cd</b><br>1.69 | 49<br><b>In</b><br>1.78 | 50<br><b>Sn</b><br>1.96 | 51<br><b>Sb</b><br>2.05 | 52<br><b>Te</b><br>2.1  | 53<br><b>I</b><br>2.66  |
| 55<br><b>Cs</b><br>0.79 | 56<br><b>Ba</b><br>0.89 | 57<br><b>La</b><br>1.1                                               | 72<br><b>Hf</b><br>1.3  | 73<br><b>Ta</b><br>1.5 | 74<br><b>W</b><br>2.36  | 75<br><b>Re</b><br>1.9  | 76<br><b>Os</b><br>2.2  | 77<br><b>Ir</b><br>2.20 | 78<br><b>Pt</b><br>2.28 | 79<br><b>Au</b><br>2.54 | 80<br><b>Hg</b><br>2.00 | 81<br><b>Ti</b><br>1.62 | 82<br><b>Pb</b><br>2.33 | 83<br><b>Bi</b><br>2.02 | 84<br><b>Po</b><br>2.0  | 85<br>At<br>2.2         |
| 87                      | 88                      | - Scale made of arbitrary units                                      |                         |                        |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |

**Ra** 0.9 - Metals = weakly attract electrons

Fr

0.7

- Non-metals, metalloids, halogens = strongly attract electrons
- Noble gasses do not attract electrons
- Bond difference of electronegativity ( $\Delta$  EN) for reactions mechanisms
- Molecular sum of electronegativity (dipole moment) for reaction solvents and extractions

#### Polar Covalent Bonds -Electronegativity



# Polar Covalent Bonds

- Individual bonds are polarized
- Molecules as a whole act as vector sum of – All individual bond polarities
  - Lone pair contributors

When vector sum of all +ve and –ve charges do not perfectly align, there's a dipole moment

• Dipole moment = net molecular polarity

# Dipole Moments of Some Common Compounds and Organic Solvents

#### Dipole moment ( $\mu$ ) = Q x r

Q = charge magnitude at either end of molecular dipole

r = distance between the charges

1 Debeye (D) =  $3.336 \times 10^{-30}$  Coulomb x meter

#### Physical properties influenced:

- boiling point, melting point
- solubility (e.g "like dissolves like")

| Compound                     | Dipole<br>Moment (D) |  |  |  |  |
|------------------------------|----------------------|--|--|--|--|
| NaCl*                        | 9.0                  |  |  |  |  |
| CH <sub>3</sub> Cl           | 1.87                 |  |  |  |  |
| H,Ŏ                          | 1.85                 |  |  |  |  |
| NĤ <sub>3</sub>              | 1.47                 |  |  |  |  |
| CO <sub>2</sub>              | 0                    |  |  |  |  |
| CCĨ <sub>4</sub>             | 0                    |  |  |  |  |
| * Measured in the gas phase. |                      |  |  |  |  |

| Compound      | μ<br>(debye) |
|---------------|--------------|
| CCL           | 0.00         |
| Ethanol       | 1.73         |
| Thiophene     | 0.51         |
| t-Butanol     | 1.67         |
| Ethyl ether   | 1.30         |
| Benzene       | 0.00         |
| Chlorobenzene | 1.58         |
| Fluorobenzene | 1.35         |
| Phenol        | 1.55         |
| Aniline       | 1.56         |
| Toluene       | 0.43         |
| Anisole       | 1.25         |
| Diphenylamine | 1.08         |
| Water         | 1.82         |

#### Electronegative atoms with lone pairs

- Oxygen, Nitrogen, Halogens
- Lone pairs extend into space away from +ve nuclei
- Causes charge separation
- Large contribution to  $\mu$

### Asymmetric Bond Polarities Add



# Symmetrical bond polarities cancel



# Inductive effects

- Induction = shifting e-s in a sigma (σ) bond in response to electronegativity of neighboring atoms
- Metals (Group I, II and transition elements) inductively *donate* electrons
- Non-metals (N, O, halogens) inductively withdraw electrons

# Polarity Applied in the Kitchen

- Chemical extractions "like dissolves like"
- Reaction "work-up" for product purification





"Siphon funnel" extraction (perfect temp, vacuum filtration)

"Drip" extraction (hot water)

"Espresso" extraction (steam = pressure)

# Polarity Applied in the Lab: Chromatography and pH dependent extractions



Thin Layer Chromatography (TLC) of vanillin and "vanillin amine" crude reaction mixtures using (L -> R) 100% EtOAc; 1: 1 EtOAc: toluene, 100% hexane, 1: 1 hexane: EtOAc pH dependent extractions of depolymerized lignin (a polyphenol) showing increasing concentration (as visable light absorbance) with lower pH values

### Polarity Applied on the Computer: Electrostatic potential maps of ionic liquids



C (grey), H (white), N (blue), O (red), P (orange)

Red = High electron density (-) Blue = Low electron density (+)

- Used to visualize charge distribution using electrostatic potential energy
- Electrostatic potential energy = K [(q<sub>1</sub> \* q<sub>2</sub>) / r] where K = Coulomb's constant, q = charge and r = radius
- Allow prediction of molecular interaction and reaction potential for portions of complex molecules
  Socha et al, PNAS 111, 35, 2014

#### **Formal Charge**

"Electronic book-keeping" Calculated for individual atoms in a molecule

# valance e-s in free atom

- (# bonding electrons/ 2)
- # of non-bonding electrons

**Formal Charge** 



# Formal Charge Practice Problems

• Draw the following compounds and calculate the formal of all atoms then calculate the net charge of the entire molecule:

1. carbon dioxide

- 2. carbon monoxide
- 3. propyl nitrile
- 4. butyldiazenide

### Resonance Structures: Resonance Forms and Hybrids

"The state attributed to certain molecules of having a structure that cannot adequately be represented by a single structural formula - but is rather a composite of two or more structures of different energies/stabilities."

- *Resonance form*: individual Kekulé structures
- *Resonance hybrid*: the actual molecular structure

# The molecules have single, unchanging structures; they do not switch back and forth between resonance forms

a.k.a "When there's more than one way to draw the same molecule"

# Resonance forms of the acetate anion are experimentally equivalent





Resonance hybrid models ball and stick (L) and electrostatic (R) Individual resonance forms

\* note double headed arrow is different than two equilibrium arrows

- Acetate C-O bond length measured at 127 pm which is halfway between a single C-O bond (120 pm) and double C=O bond (135pm)
- Confirmed by electrostatic model
- $\pi$  and non-bonding electrons move, not atoms
- Overall 3D shape remains the same

# Why Draw Resonance Forms

- Resonance hybrids can not be used to clearly illustrate reaction mechanisms
- If the individual structures did exist, the most thermodynamically stable structures would comprise more of the hybrid
- The structure of the product is influenced by which resonance form reacts

# When to Draw Resonance Forms?

1. Molecules with resonance always involve at least one double bond

2. Resonance forms differ only in the placement of their  $\pi$  or nonbonding electron(s):

- A curved arrow always represents the movement of electrons, not the movement of atoms

Double headed arrow = 2 electron movement Single headed arrow = 1 electron movement (radical)

*3. More resonance forms the better.* Because more negative charge can *delocalize* over more positive nuclei

### How to Draw Resonance Forms

The most important resonance form has the maximum number of atoms with full octets

If a resonance form must have a formal charge(s), the resonance form should accommodate the charge(s) appropriately. Otherwise minimize formal charge(s).

Maximize the number of covalent bonds

Minimize the number of unpaired electrons

http://www.chem.ucla.edu/harding/tutorials/resonance/imp\_res\_str.html

$$H_2C \xrightarrow{\oplus} OH \longrightarrow H_2C \xrightarrow{\oplus} OH$$

Full octet is the most important rule









Least number of formal charges and most number of covalent bonds





Least number of unpaired electrons

\* exception with  $O_2$  due to MO considerations

# 1906: Benzene used to make *Café Sanka* (decaffeinated coffee)



Benzene – a proven carcinogen

#### Benzene (1867-today)



Again, experimentally measured bond length represents the average of a single and a double bond

Cyclohexane C-C bond = 147 pm Cyclohexene C=C bond = 135 pm

Benzene C<u>--</u>C bond = 140 pm

#### **Resonance stability**



### Drawing resonance structures

- Any 3 atom grouping with a p-orbital on each atom has 2 resonance forms

 Asterisk (\*) indicates the p-orbital
is *either* vacant, contains a single e-(radical) *or* an e- pair (lone pair)

- Exchange the position of the multiple bond and the \* from one end of the molecule to the other

Some examples:

2,4 – pentanedione anion Carbonate anion Pentadienyl radical X, Y or Z = C, N, O, P, S or other atoms

0, 1 or 2 electrons

multiple bond

multiple bond

\*

# Practice Problems: Draw all resonance forms of the following compounds



# Antioxidant activity of resveratrol: an example of multiple resonance forms that "quenches" free radicals





resveratrol

hydroxy resveratrol radical

J. Org. Chem. 2012, 77, 3868-3877

# **Coffee Antioxidants**

- Chlorogenic acids (CGAs)
- 12% of dry weight of green (unroasted) beans
- Large Range 20-675 mg per cup
- Concentration dependent on extraction technique
- Decaffeinated coffee can have equal or more CGAs per cup
- These compounds are also the reason for the colors of both coffee and red wine

http://www.rsc.org/chemistryworld/Issues/ 2011/May/ChemistryInEveryCup.asp



### Part 2: Acids and Bases

Organic compound acidity (pKa) and basicity determines:

- reactivity
- solubility

Under appropriate pH conditions

# **Brønsted Acids and Bases**

- Acids = Donate H<sup>+</sup> (hydrogen ion, aka proton)
- Bases = Accept H<sup>+</sup>

Nomenclature

- Acids and conjugate acids (both donate H<sup>+</sup>)
- Bases and conjugate bases (both accept H<sup>+</sup>)

- "An acid is an acid, and a base is a base"

#### Acid base chemistry



#### Legal Examples



#### Legal examples cntd



# Illegal Examples



#### Illegal examples cntd



D-lysergic acid

Ergot fungus

Lysergic acid diethylamide (LSD)

# рКа

- The measure of the strength (or weakness) of an acid
- "The pH at which 50 mole % of your molecule is ionized"
- Large range (-16 to 60)
- Lower the pKa = stronger the acid
- pKa values differ depending on solvent (e.g. pKa of acetic acid in water is 4.73, in DMSO it's 12.3) <sub>Ka</sub> =  $\frac{[A-][H+]}{[HA]}$  <sub>pKa</sub> =  $-\log_{10} Ka$

Henderson-Hasselbalch equation:  $pH = pKa + \log_{10} \frac{[A-]}{[HA]}$ 

#### pKa of some common compounds

| Substrate                         | pKa H <sub>2</sub> O (DMSO | ) Substrate pKa                                                   | H <sub>2</sub> O(DMSO) | Substrate P                          | Ka H <sub>2</sub> O | (DMSO) | Substrate                                     | oKa H <sub>2</sub> O  | (DMSO) |  |
|-----------------------------------|----------------------------|-------------------------------------------------------------------|------------------------|--------------------------------------|---------------------|--------|-----------------------------------------------|-----------------------|--------|--|
| INORG                             | ANIC ACIDS                 | CARBOXYLIC                                                        |                        | ALCOHOLS                             |                     |        | PROTONATED NITROGEN                           |                       |        |  |
| H <sub>2</sub> O                  | 15.7 (32)                  |                                                                   |                        | НОН                                  | 15.7                | (31.2) | N <sup>+</sup> H <sub>4</sub>                 | 9.2                   | (10.5) |  |
| H <sub>3</sub> O⁺                 | -1.7                       | X OH                                                              | 4 76 (10 3)            | MeOH                                 | 15.5                | (27.9) | EtN <sup>+</sup> H₃                           | 10.6                  | (,     |  |
| H <sub>2</sub> S                  | 7.00                       | CH <sub>2</sub> NO <sub>2</sub>                                   | 1.68                   | i-PrOH                               | 16.5                | (29.3) | i-Pr <sub>2</sub> N+H <sub>2</sub>            | 11.05                 |        |  |
| HBr                               | -9.00 (0.9)                | CH <sub>2</sub> F                                                 | 2.66                   | t-BuOH                               | 17.0                | (29.4) | Et <sub>3</sub> N <sup>+</sup> H              | 10.75                 | (9.00) |  |
| HCI                               | -8.0 (1.8)                 | CH <sub>2</sub> CI                                                | 2.86                   | c-nex <sub>3</sub> COH               | 24.0                |        | PhN <sup>+</sup> H <sub>3</sub>               | 4.6                   | (3.6)  |  |
| HF                                | 3.17 (15)                  | CH <sub>2</sub> Br                                                | 2.86                   | CF <sub>3</sub> CH <sub>2</sub> OH   | 12.5                | (23.5) | PhN⁺(Me)₀H                                    | 5.20                  | (2.50) |  |
| HOCI                              | 7.5                        | CHCl <sub>2</sub>                                                 | 1.29                   | (CF <sub>3</sub> ) <sub>2</sub> CHOH | 9.3                 | (18.2) | Ph <sub>2</sub> N <sup>+</sup> H <sub>2</sub> | 0.78                  |        |  |
| HCIO <sub>4</sub>                 | -10                        | CCl <sub>3</sub>                                                  | 0.65                   | C <sub>6</sub> H <sub>5</sub> OH     | 9.95                | (18.0) | 2-napthal-N+H <sub>3</sub>                    | 4.16                  |        |  |
| HCN                               | 9.4 (12.9)                 | CF <sub>3</sub>                                                   | -0.25                  |                                      | 0.4                 | (10.8) | H <sub>2</sub> NN <sup>+</sup> H <sub>2</sub> | 8.12                  |        |  |
| HN.                               | 4.72 (7.9)                 | НО                                                                | 3.77                   |                                      | 10.2                | (10.0) | HON+H <sub>2</sub>                            | 5.96                  |        |  |
| 11113                             | 4.72 (7.0)                 | C <sub>6</sub> H <sub>5</sub>                                     | 4.2 (11.1)             | 2-nanthol                            | 10.2                | (17.1) |                                               | - <sup>H</sup> 11.0   | (9.80) |  |
| HSCN                              | 4.00                       | 0-O2NC6H4                                                         | 2.17                   |                                      |                     | (17.1) |                                               | >                     | (0.00) |  |
| H <sub>2</sub> SO <sub>3</sub>    | 1.9, 7.21                  | m-O2NC6H4                                                         | 2.45                   |                                      | OXAMIC              |        | Morpholine o                                  | N <sup>+</sup> H₂8.36 |        |  |
| H <sub>2</sub> SO <sub>4</sub>    | -3.0, 1.99                 | p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub>                   | 3.44                   | N_OH                                 | 11.3                | (20.1) |                                               | /                     |        |  |
| H <sub>3</sub> PO₄                | 2.12, 7.21,                | o-CIC <sub>6</sub> H <sub>4</sub>                                 | 2.94                   | Ph                                   | 11.0                | (      | Substrate P                                   | Ka H₂O                | (DMSO) |  |
| HNO                               | -1.3                       |                                                                   | 3.83                   | Ио, Ц                                | 8.88                | (13.7) |                                               |                       | . ,    |  |
|                                   | 3.20                       | <i>p</i> -CIC <sub>6</sub> H <sub>4</sub>                         | 3.99                   |                                      | (NH)                | )      | AM                                            | INES                  |        |  |
|                                   | 5.25                       | 0-(CH <sub>3</sub> ) <sub>3</sub> N <sup>+</sup> C <sub>6</sub> F | 1 <sub>4</sub> 1.57    | Ph NOH                               |                     | (18.5) | HN <sub>3</sub>                               | 4.7                   | (7.9)  |  |
| H <sub>2</sub> CrO <sub>4</sub>   | -0.98, 6.50                | p-(CH3)3IN C6                                                     | 4 47                   | Me                                   |                     |        |                                               | 38<br>(36 THE))       | (41)   |  |
| CH <sub>3</sub> SO <sub>3</sub> H | -2.6 (1.6)                 | 0<br>0                                                            |                        | PERO                                 | KIDES               |        | TMSoNH                                        | 26(THF)               | (30)   |  |
| CF <sub>3</sub> SO <sub>3</sub> H | -14 (0.3)                  | п Он                                                              |                        |                                      |                     |        | PhNH <sub>2</sub> (30.6)                      |                       | (00)   |  |
| NH <sub>4</sub> CI                | 9.24                       | B= H                                                              | 4.25                   | MeOOH                                | 11.5                |        | 2 ()                                          |                       |        |  |
| B(OH) <sub>3</sub>                | 9.23                       | trans-CO <sub>2</sub> H                                           | 3.02, 4.38             | CH <sub>3</sub> CO <sub>3</sub> H    | 8.2                 |        |                                               |                       |        |  |
| HOOH                              | 11.6                       | cis-CO <sub>2</sub> H                                             | 1.92, 6.23             |                                      |                     |        |                                               |                       |        |  |

# Predicting Acid / Base reactions from pKa

- The proton (H<sup>+</sup>) will always go from from stronger acid to the stronger base
- An acid will donate a proton to the conjugate base of a weaker acid
- The conjugate base of a weaker acid will remove a proton from a stronger acid
- The product conjugate acid in an acid-base reaction must be weaker and less reactive than the starting acid
- The product conjugate base must be weaker and less reactive than the starting base

#### pKa of the conjugate acid product must be higher than pKa of the starting acid



Rule of thumb – reaction goes to 99% completion when pKa of the conjugate acid (product) is 3 orders of magnitude greater than that of the starting acid

# Practice problems: Will the following reactions proceed?



# Using pKa for product isolation: synthesis of methamphetamine



#### Lewis bases and Lewis acids



Donates electrons



Electrons always flow in the direction of the arrow

### Lewis Acids = Electron Acceptors

Have vacant low energy (S) orbitals
(e.g. H<sup>+</sup>, Li<sup>+</sup>, Mg<sup>+</sup> cations)

Have polar bonds to hydrogen so they can donate H<sup>+</sup>
(e.g. carboxylic acids, phenols, alcohols)

Some are also Brønsted acids
(e.g. H<sub>2</sub>O, HCl, HBr, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>)

- Some are metal compounds (e.g. AlCl<sub>3</sub>, TiCl<sub>4</sub>, FeCl<sub>3</sub>, ZnCl<sub>2</sub>)

#### Lewis Bases = Electron Donors



# Other notes on organic acids/bases

- Anions are stabilized by placing charge on most electronegative atom and through resonance (e.g. alcohols, carboxylic acids, ketones)
- In biological systems (pH 7.3) carboxylates prevail, amino acids are "zwitterionic"
- Organic bases typically contain nitrogen, but strong enough acids can protonate oxygen
- To react completely with NaOH (> 99.9%) an acid must have a pKa at least 3 units smaller than the pKa of water (15.7) (So, ~ 12.7 or less)
- More delocalization of charge (e.g. acetate, phenylamine) makes a weaker base because the electrons are spread over a larger area and have less access to acquire the proton (H+)
- Alcohols and carboxylic acids can donate and accept H<sup>+</sup>

# Acetic acid as a base (and where)

 Protonation at the carbonyl is resonance stabilized



Protonation at the OH does not occur



structure

# Intermolecular forces

- Attract molecules to other molecules
- Non-covalent interactions
- Additive (i.e. molecules can have multiple types of intermolecular forces acting simultaneously)
- Generally much weaker than intramolecular forces (i.e.covalent and ionic bonds)

#### **London Dispersion Forces**

×

×

+

+

+

- Weakest intermolecular forces
- Result from instantaneous dipole
- "Polarizability" allows these dipoles and is a result of how well electrons can move around orbitals
  - increases as orbital size increases
- a.k.a Van Der Waals Forces
- Can occur in molecules with zero dipole moment (i.e. octane, below)

# **Dipole Dipole Interaction**

- Stronger than London forces
- Result from interacting dipoles among molecules with permanent dipole moments



# Hydrogen Bonding

- Strongest intermolecular force (5-30 kJ/mol)
- "H-bonds are made on the FON"
- Can be both inter- and intramolecular
- Occur in numerous biomolecules (i.e. water, DNA, protein/enzymes, etc)







Intramolecular H-bonding stabilizes the keto-enol tautomer

### Forces of Attraction

| Interaction                   | Example                         | Energy        |
|-------------------------------|---------------------------------|---------------|
| ion-ion                       | Na <sup>+</sup> Cl <sup>-</sup> | 400 - 4000 kJ |
| Covalent Bonds                | H-H                             | 150-1100 kJ   |
| ion-dipole (I-D)              | Na <sup>+</sup> HCl             | 40-600 kJ     |
| dipole - dipole (D-D)         | HCI HCI                         | 5-25 kJ       |
| dipole - induce dipole (D-ID) | HCI O <sub>2</sub>              | 2-10 kJ       |
| London Dispersion (LD)        | $N_2 N_2$                       | 0.05 - 40 kJ  |

#### Homework Problems

- In chapter 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14,15, 17, 18, 19
- End of chapter 33, 34, 53, 54, 56, 57
- Mrs. Meer's 'Even More Resonance' problems
- **a-j** http://www.csebcc.org/CHM\_31/resonance\_practice.pdf