Stereochemistry at Tetrahedral Centers

© Aaron Socha, Bronx Community College, 2015

Chirality = "handedness"

- Macroscale consequences:
- gloves, keys, screws, musical instruments, records, etc...
- Chemical consequences:
- 500+ pharmaceuticals, biological molecules (carbohydrates, amino acids, nucleic acids), smells/ flavoring agents, catalysts, plastics/polymers, etc...

Any non-superimposable mirror image that does not have a plane of symmetry has "chirality"

Left hand

Mirror image of left hand

Things that have a plane of symmetry are "achiral"

This thing is achiral

"Perhaps it is trivial or obvious that life is chiral when looking at the nautilus, but this obvious chirality is a macroscopic feature which belies the fine arrangement of atoms which defines the chirality of biomolecules" The Astronomist (Jan 21, 2011)

"Perhaps looking glass milk isn't good to drink" - Alice (1871) Through the Looking Glass

OH

Isomers

*Enantiomers require least 1 chiral carbon atom (a carbon bonded to 4 different substituents)
** Chiral diastereomers require at least 2 chiral carbon atoms
*** cis/trans isomers and E / Z isomers can be achiral

Cis/Trans and E/Z Isomers: Achiral Diastereomers

trans-1,4-dimethylcyclohexane (achiral)

Cis/Trans Isomers

- Priority is given to the longest alkyl chain with cis-trans nomenclature
- cis = longest chains on same side of double bond
- trans = longest chains on opposite side of double bond
- Best used for di-substituted alkenes
- Terminal alkenes cannot be cis-trans

cis/trans isomers
Di-substituted alkene

not isomers
Mono-substituted alkene
Terminal alkene

cis/trans tri- and tetra- substituted alkenes

trans-3-methylhex-3-ene

trans-3,4-dimethylhex-3-ene

cis-3-methylhex-3-ene

cis-3,4-dimethylhex-3-ene

Sometimes the cis/trans system does not work...

1-bromo-2-chloro-
2-fluoro-1-iodoethene

1-bromo-2-chloro-
2-fluoro-1-iodoethene

Cahn-Ingold-Prelog Rules

1. Rank the 4 atoms connected to chiral carbon:

Atomic \#	35	17	16	15	8	7	6	(2)	1	
Higher ranking	$\mathrm{Br}>$	$\mathrm{Cl}>\mathrm{S}$	$>\mathrm{P}$	$>\mathrm{O}$	$>\mathrm{N}>\mathrm{C}$	${ }^{2} \mathrm{H}$	${ }^{1} \mathrm{H}$	Lower ranking		

2. If a decision is not possible by $1^{\text {st }}$ atom, look at $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }} \ldots$ until first difference is reached

lower higher

higher lower higher

Cahn-Ingold-Prelog Rules

3. Multiple bonds are equivalent to the same number of singly bonded atoms (i.e. split the multiple bond)

Use the E / Z designation to describe achiral alkene diastereomers

- Works for all alkene systems
- Cahn-Ingold-Prelog rules apply for prioritizing substituents
- "Highest priority" substituent can be priority 1 and 2 or 1 and 3
- Highest priority substituents must be on separate sp^{2} carbons

E
"Entgegen" German, opposite Highest ranking groups on opposite side of double bond (and on different sp^{2} cabon atoms)

Z
"Zusammen" German, same Highest ranking groups on same side of double bond (and on different sp^{2} cabon atoms)

E/Z examples

(E)-3-methyl-1,3-pentadiene
"High" are on opposite sides of double bond

(E)-1-bromo-2-isopropyl 1,3-butadiene
"High" are on opposite sides of double bond

(Z)-2-hydroxymethyl 2-butenoic acid
"High" are on same side of double bond

There is no specific relationship between cis-trans and E/Z

- They are based on fundamentally different naming rules

cis-but-2-ene (Z)-but-2-ene (E)-but-2-ene

cis-2-but-2-ene
(Z)-2-but-2-ene

trans-but-2-ene

cis-2-chlorobut-2-ene
(E)-2-chlorobut-2-ene

E/Z systems when it's impossible to name using cis/trans

(Z)-1-bromo-2-chloro-2-fluoro-1-iodoethene

(E)-1-bromo-2-chloro-2-fluoro-1-iodoethene

Non-cis/trans, non E/Z alkenes

3-ethyl-4-methylhex-3-ene

3-ethyl-2,4-dimethylpent-2-ene

Isomers

*Enantiomers require least 1 chiral carbon atom (a carbon bonded to 4 different substituents)
** Chiral diastereomers require at least 2 chiral carbon atoms
*** cis/trans isomers and E / Z isomers can be achiral

Double your pleasure, double your fun

* $=$ a chiral center or chiral carbon atom

Chiral Carbon Atoms

- Carbon atom must be bonded to 4 distinct atoms or functional groups
- Molecules with multiple chiral carbon atoms can be enantiomers or (chiral) diastereomers
- "chirality center" or "stereocenter"

Propanoic acid (achiral)

Lactic acid (chiral)

Enantiomers

- Molecules that are non-superimposable mirror images (optical isomers, like your hands)

- Enantiomers can have more than one chiral carbon atom

$(2 R, 3 R)$-2-chloro-3-fluorobutane
1
1
1
1
1
1
1
1

$(2 S, 3 S)$-2-chloro-3-fluorobutane

Cahn-Ingold-Prelog Rules

1. Rank the 4 atoms connected to chiral carbon:

| Atomic \# | 35 | 17 | 16 | 15 | 8 | 7 | 6 | (2) | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Higher ranking | $\mathrm{Br}>\mathrm{Cl}>\mathrm{S}$ | $>\mathrm{P}$ | $>\mathrm{O}$ | $>\mathrm{N}$ | $>\mathrm{C}$ | ${ }^{2} \mathrm{H}$ | ${ }^{1} \mathrm{H}$ | Lower ranking | | |

2. If a decision is not possible by $1^{\text {st }}$ atom, look at $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }} \ldots$ until first difference is reached

lower higher lower higher

Cahn-Ingold-Prelog Rules

3. Multiple bonds are equivalent to the same (i.e. split the multiple bond)
number of singly bonded atoms

Assigning R and S configurations at chiral centers using Cahn-Ingold-Prelog

1. Draw the chiral carbon and place the lowest ranking substituent (usually H) in the back
2. If $1,2,3$ is clockwise it's and R configured carbon. If 1,2 , 3 is counter-clockwise it's and S configured carbon
3. If H cannot be easily placed in the back, flip the assignment

R configuration

S configuration

Assigning R and S Configuration

So instead of R its S

Draw/model examples of achiral and chiral compounds (and enantiomers when appropriate) and assign R or S configuration to each enantiomer

- 5-bromodecane (chiral)
- methylcyclohexane (achiral)
- 1,2-dimethylcyclohexane (achiral)
- 1,1-ethylmethycyclopentane (chiral)
- 2-methylcyclohexanone (chiral)
- 2-butanol (chiral)

Discovery of Enantiomers

- Tartaric acid crystals from wine by Louis Pasteur (1848)
- Separated mixture of enantiomers using tweezers!
- Enantiomers have identical physical properties (melting point, solubility, etc.)
- Melting point of mixture is elevated

Crystals of + and - tartaric acid recreated from Pasteur's lab notebook

	Melting point, ${ }^{\circ} \mathbf{C}$	$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{5}}{ }^{\circ} \mathbf{C}$	Solubility, $\mathbf{g} / \mathbf{1 0 0} \mathbf{g ~ H} \mathbf{~} \mathbf{O}$ at $\mathbf{1 5}^{\circ} \mathbf{C}$
$(2 R, 3 R)-(+)$-Tartaric acid	170	$+11.98^{\circ}$	139
$(2 S, 3 S)-(-)$-Tartaric acid	170	-11.98°	139
$(2 R, 3 S)$-Tartaric acid	140	0°	125
(\pm)-Tartaric acid	206	0°	139

Optical Activity of Enantiomers

- Enantiomers can rotate polarized light in opposite directions

$$
+(\mathrm{D}) \text { or }-(\mathrm{L})
$$

(+) lactic acid

- Racemic Mixtures are 1:1

$$
\alpha_{D}=+3.82
$$

(-) lactic acid
$\alpha_{D}=-3.82$ molar mixtures of
enantiomers and give zero optical rotation of polarized light ($\alpha_{D}=0$)

$$
\pm \text { or } \mathrm{D} / \mathrm{L}
$$

Measuring Specific Rotation of a Sample

- Solutions of some organic molecules rotate plane polarized light (Biot, early 1800s)

$$
\begin{aligned}
& \text { light } \\
& \text { source }
\end{aligned}
$$

- Angle and direction of rotation (α) is measured in a polarimeter.
- Left (counter clockwise)
= levorotatory (-)
- Right (clockwise
= dextrorotatory (+)

- Extent of rotation is dependent on path length (of sample tube) and concentration
- Specific rotation $\left(\alpha_{D}\right)$ is measured at the "sodium D-line" (589.6 nm)

Circular Dichroism (CD) Spectroscopy

- CD measures optical rotation through the full spectrum of wavelengths (not just 589.6 nm)
- Many sampling options (small molecules, DNA, proteins, etc.)
- Example = Gold nanoparticles with achiral thioether ligands $\mathrm{Au}_{38}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)_{24}$
- However, the arrangement of the thioethers on the gold is chiral

Calculations of Enantiomeric Excess (EE)

Specific rotation (α_{D}) can be used to calculate reaction yields of enantiomeric ratios such as:
$\mathrm{EE}=\left[\alpha_{\mathrm{D}}\right]$ observed $/\left[\alpha_{\mathrm{D}}\right]$ pure $\times 100$

(+) lactic acid

$$
\alpha_{D}=+3.82
$$

This is the α_{D} of the pure enantiomer

Data from polarimeter $($ observed $)=\alpha_{D}=+1.42$
Therefore:

$$
\begin{aligned}
\mathrm{EE} & =1.42 / 3.82 \times 100 \\
& =37.2 \%
\end{aligned}
$$

EE vs. Optical Purity

Penicillin
$\alpha_{D}=+233^{\circ}$ for pure enatiomer
$\%$ optical purity $=\left[\alpha_{D}\right]$ observed $/\left[\alpha_{D}\right]$ pure $\times 100$
$\left[\alpha_{D}\right]$ observed for the sample is $+93.2^{\circ}$
$\%$ optical purity for the sample is therefore $93.2^{\circ} / 233^{\circ} \times 100$
The remaining 60\% of the sample is racemic mixture of enantiomers: 30\% (+) and 30\% (-)
Therefore, the calculated optical purity of (+) Penicillin in the sample is $\mathbf{7 0 \%}$

Non-linear effects of asymmetry

Horeau Effect: There is an observed non- equivalence between optical purity calculated from optical rotation data and the mass of each enantiomer after their resolution. Some enantiomers have different intramolecular interactions (i.e. internal H-bonds) which cause them to have different "shapes" and thus rotate light non-equally.

Also: When a chiral substance undergoes a reaction, the reaction rate and the product ratio will depend upon the enantiomeric excess present in the starting material.

Tetrahedron 1973, 29, 7, p 1055
Angew Chem Int Ed 1998, 37, 2922-2959
http://stoltz.caltech.edu/litmtg/mechclub/2008/JAELit06.pdf

Resolution of Chiral Compounds

- Enantiomers have identical physical properties and as such cannot be separated from one another
- Reaction of a racemic mixture with a pure enantiomer (or another compound) allows diastereomers to form (which can be separated due to distinct physical properties boiling point, melting point, polarity)

Chiral Resolution: Creating

Diastereomers from a Racemic

Mixture of Enantiomers

Racemic mixture

Diastereomeric products

Relative and Absolute Configuration

- Relative configuration is determined for chiral carbons in relation their neighboring chiral carbons within the same molecule (this is usually a term used to describe chiral diastereomers)
- There is no simple correlation between R, S configuration and the sign or magnitude of optical rotation (+ or -)
- Why? light is absorbed differently by different functional groups, their relationship relative to one another determines sign/direction of optical rotation
- This pairing (for example $+(R),-(S),+(R, S)-(S, R)$, etc...) is called the absolute configuration
- Absolute Configuration is usually determined by x-ray diffraction comparison of individual enantiomers

Absolute Configurations: S-glyceraldehyde and S-alanine

S(-) glyceraldehyde

$$
\alpha_{D}=-8.7
$$

$S(+)$ alanine
$\alpha_{D}=+8.5$

$$
\alpha_{D}^{22}=-650
$$

Relative Configuration determined on the naturally produced antibiotic

Absolute Configuration determined by comparing the natural product to synthetic versions of + and -

5 chiral centers =
$2^{5}(32)$ possible diastereomers!

Chiral Diastereomers

- Stereoisomers (spatial isomers) that are not enantiomers
- Contain 2 or more chiral carbons
- In fact, all types of diastereomers (e.g. cis/trans isomers, E/Z isomers, rotamers, and conformers) can contain chiral carbons.
- 2^{n} diastereomers when $n=$ number of chiral carbons (e.g. 2 chiral centers $=2^{2}=4$ diastereomers, 3 chiral centers $=$ $2^{3}=8$ diastereomers, etc...)
- Epimers are chiral diastereomers that differ at only one chiral center (thus they are not enantiomers)
- Chiral diastereomers have different physical properties

Relationship between Enantiomers and Chiral Diastereomers
(S)-2-chloro-(R)-3-fluorobutane
(R)-2-chloro-(S)-3-fluorobutane

(S)-2-chloro-(S)-3-fluorobutane
$\stackrel{\text { enantiomers }}{\longleftrightarrow}$ diastereomers

Fisher Projections

- Must convert 3D structure to 2D and visualize where atoms are spatially oriented
- Used to assign configurations to more complex diastereomers (i.e. carbohydrates, peptides) with several contiguous chiral centers
- Most useful for linear compounds for which sawhorse projections can be drawn
- Also useful for rapidly drawing all possible diastereomers of a compound

"threose" monosacchride (carbohydrate/sugar)

IUPAC:
(R,R) - 2,3,4-trihydroxybutanal
$2^{n}=4$ diasteromers

Sawhorse projection

1. Draw a saw-horse projection
2. Put aldehyde on top (for sugars)
3. Looking down bond between chiral carbons
4. Use Cahn-Ingold-Prelog to assign priority and R or S to each center
5. If H is forward, reverse R and S

H's are forward thus " R "

Fisher projection

Using Fisher projections to draw all possible diasteromers of threose

(2S,3S)-2,3,4-trihydroxybutanal
(2R,3R)-2,3,4-trihydroxybutanal

"threose" monosacchride (carbohydrate/sugar)

IUPAC:
(R,S) - 2,3,4-trihydroxybutanal

$$
2^{n}=4 \text { diasteromers }
$$

- Multiple chiral centers
H atom in one is forward H atom in one is back
- Confuses R/S assignment using simple Cahn Ingold Prelog rules

Meso compounds

- Have chiral centers but are achiral molecules
- Internal plane of
symmetry

L (+) tartaric acid
$\mathrm{MP}=170^{\circ} \mathrm{C}$
$\alpha_{D}=+11.98$

- Distinct physical properties from their other diastereomers
- Optically inactive
- Are identical to one another

$(2 R, 3 R)$-2,3-dihydroxysuccinic acid $(2 S, 3 S)$-2,3-dihydroxysuccinic acid

D (-) tartaric acid
$\mathrm{MP}=170^{\circ} \mathrm{C}$
$\alpha_{D}=-11.98$
diastereomers

(2R,3S)-2,3-dihydroxysuccinic acid meso tartaric acid

$$
\mathrm{MP}=140^{\circ} \mathrm{C}
$$

$$
\alpha_{D}=0
$$

Spotting Meso Compounds

- Look for:
indistinguishable end groups (e.g. both sides of molecule have COOH functionality)
- Rotate:
around same bond we eyed for Fisher Projections
- Must have:

Internal plane of symmetry (when in doubt, make a model)

(2R,3S)-2,3-dihydroxysuccinic acid
(2R,3S)-2,3-dihydroxysuccinic acid meso tartaric acid

Chirality at N, P, S

- Trivalent nitrogen is tetrahedral with its lone pair electrons acting as the fourth (lowest ranked) "substituent"
- As such, it is chiral in principal, but not in practice because it often interconverts too rapidly to isolate individual enantiomers
- Trivalent phosphorus (phosphines) has similar chirality, and interconvert slower - allowing for isolation of R and S enantiomers
- Divalent sulfur compounds (thiols, sulfides, disulfides) are achiral but trivalent sulfur compounds (sulfonium salts $=\mathrm{R}_{3} \mathrm{~S}^{+}$) are chiral and interconvert slowly enough to be isolated.

(S)-S-adenosylmethionine (SAM)

Prochirality

- A molecule is prochiral if it can be converted from achiral to chiral in a single chemical step
- The enantiomer that is produced depends on the face of the planar carbonyl group that undergoes reaction $(R e=C W$ and $S i=$ CCW faces)
- Prochirality centers can also be sp^{3} hybridized (pro-S substituent replacement leads to R chirality and pro-S substituent replacement leads to S chirality)

Homework

Watch Video on Stereochemistry: activity/v/cahn-ingold-prelog-system-for-naming-enantiomers

Problems Chapter 5:

In text: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 20, 21, 22, 23

End of chapter: 31, 36, 37, 39, 40, 43, 52, 54, 68, 69, 71, 72, 75

