Stereochemistry at Tetrahedral Centers

© Aaron Socha, Bronx Community College, 2015

Chirality = "handedness"

- Macroscale consequences:

 gloves, keys, screws, musical instruments, records, etc...
- Chemical consequences:

 - 500+ pharmaceuticals, biological molecules (carbohydrates, amino acids, nucleic acids), smells/ flavoring agents, catalysts, plastics/polymers, etc...

Any non-superimposable mirror image that does not have a plane of symmetry has "chirality"

Left hand

Mirror image of left hand

Things that have a plane of symmetry are "achiral"

This thing is achiral

"Perhaps it is trivial or obvious that life is chiral when looking at the nautilus, but this obvious chirality is a macroscopic feature which belies the fine arrangement of atoms which defines the chirality of biomolecules" The Astronomist (Jan 21, 2011)

Things that do not have a plane of symmetry are "asymmetric"

"Perhaps looking glass milk isn't good to drink" – Alice (1871) Through the Looking Glass

*Enantiomers *require least 1 chiral carbon atom* (a carbon bonded to 4 *different* substituents) ** Chiral diastereomers require at least 2 chiral carbon atoms *** cis/trans isomers and E/Z isomers can be achiral

Cis/Trans and E/Z Isomers: Achiral Diastereomers

trans-1,4-dimethylcyclohexane (achiral)

Cis/Trans Isomers

- Priority is given to the longest alkyl chain with *cis-trans* nomenclature
- *cis* = longest chains on same side of double bond
- trans = longest chains on opposite side of double bond
- Best used for di-substituted alkenes
- Terminal alkenes cannot be cis-trans

cis/trans tri- and tetra- substituted alkenes

trans-3-methylhex-3-ene

trans-3,4-dimethylhex-3-ene

cis-3-methylhex-3-ene

cis-3,4-dimethylhex-3-ene

Sometimes the cis/trans system does not work...

1-bromo-2-chloro-2-fluoro-1-iodoethene 1-bromo-2-chloro-2-fluoro-1-iodoethene

Cahn-Ingold-Prelog Rules

1. Rank the 4 atoms connected to chiral carbon:

Atomic #	35	17	16	15	8	7	6	(2)	1	
Higher ranking	Br >	· CI >	> S 💈	> P >	0	> N >	С	² H	^{1}H	Lower ranking

If a decision is not possible by 1st atom, look at 2nd, 3rd, 4th... until first difference is reached

Cahn-Ingold-Prelog Rules

 Multiple bonds are equivalent to the same number of singly bonded atoms (i.e. split the multiple bond)

Use the E/Z designation to describe achiral alkene diastereomers

- Works for all alkene systems
- Cahn-Ingold-Prelog rules apply for prioritizing substituents
- "Highest priority" substituent can be priority 1 and 2 or 1 and 3
- Highest priority substituents *must* be on separate sp² carbons

"Entgegen" German, opposite Highest ranking groups on opposite side of double bond (and on different sp² cabon atoms)

"Zusammen" German, same Highest ranking groups on same side of double bond (and on different sp² cabon atoms)

ligh

E/Z examples

of double bond

of double bond

of double bond

There is no specific relationship between cis-trans and E/Z

• They are based on fundamentally different naming rules

E/Z systems when it's impossible to name using *cis/trans*

2-fluoro-1-iodoethene

Non-cis/trans, non E/Z alkenes

3-ethyl-4-methylhex-3-ene

3-ethyl-2,4-dimethylpent-2-ene

*Enantiomers *require least 1 chiral carbon atom* (a carbon bonded to 4 *different* substituents) ** Chiral diastereomers require at least 2 chiral carbon atoms *** cis/trans isomers and E/Z isomers can be achiral

Double your pleasure, double your fun

= a chiral center or chiral carbon atom

Chiral Carbon Atoms

- Carbon atom must be bonded to 4 distinct atoms or functional groups
- Molecules with multiple chiral carbon atoms can be enantiomers or (chiral) diastereomers
- "chirality center" or "stereocenter"

Enantiomers

• Molecules that are non-superimposable mirror images (optical isomers, like your hands)

• Enantiomers can have more than one chiral carbon atom

(2S,3S)-2-chloro-3-fluorobutane

Cahn-Ingold-Prelog Rules

1. Rank the 4 atoms connected to chiral carbon:

Atomic #	35	17	16	15	8	7	6	(2)	1	
Higher ranking	Br >	Cl >	S >	P >	0 >	N >	С	² H	^{1}H	Lower ranking

If a decision is not possible by 1st atom, look at 2nd, 3rd, 4th... until first difference is reached

Cahn-Ingold-Prelog Rules

3. Multiple bonds are equivalent to the same number of singly bonded atoms (i.e. split the multiple bond)

Assigning *R* and *S* configurations at chiral centers using Cahn-Ingold-Prelog

1. Draw the chiral carbon and place the lowest ranking substituent (usually H) in the back

If 1, 2, 3 is clockwise it's and R configured carbon. If 1, 2,
 3 is counter-clockwise it's and S configured carbon

3. If H cannot be easily placed in the back, flip the assignment

Assigning R and S Configuration

So instead of R its S

Draw/model examples of achiral and chiral compounds (and enantiomers when appropriate) and assign R or S configuration to each enantiomer

- 5-bromodecane (chiral)
- methylcyclohexane (achiral)
- 1,2-dimethylcyclohexane (achiral)
- 1,1-ethylmethycyclopentane (chiral)
- 2-methylcyclohexanone (chiral)
- 2-butanol (chiral)

Discovery of Enantiomers

- Tartaric acid crystals from wine by Louis Pasteur (1848)
- Separated mixture of enantiomers using tweezers!
- Enantiomers have identical physical properties (melting point, solubility, etc.)
- Melting point of mixture is elevated

Crystals of + and – tartaric acid recreated from Pasteur's lab notebook

	Melting point, °C	$[\alpha]_D^{25 \ \circ C}$	Solubility, g/100 g H ₂ O at 15 °C
(2R,3R)-(+)-Tartaric acid	170	+11.98°	139
(2S,3S)-(-)-Tartaric acid	170	-11.98°	139
(2R,3S)-Tartaric acid	140	0°	125
(±)-Tartaric acid	206	0°	139

Optical Activity of Enantiomers

- Enantiomers can rotate Н н HO_{////////} U.,...IOH *polarized light* in opposite directions COOH H₃(HOO CH_3 + (D) or - (L)(+) lactic acid (-) lactic acid Racemic Mixtures are 1:1 $\alpha_{\rm D}$ = - 3.82 $\alpha_{\rm D}$ = + 3.82 molar mixtures of enantiomers and give zero optical rotation of $\alpha_{\rm D} = \alpha / / c$ polarized light ($\alpha_{\rm D} = 0$) *Where:* α_{D} = specific rotation of sample α = observed rotation (degrees) *I* = path length (decimeters) $\pm or D/L$
 - $c = concentration (g/cm^3)$

Measuring Specific Rotation of a Sample

- Solutions of *some* organic molecules rotate plane polarized light (Biot, early 1800s)
- Angle and direction of rotation (α) is measured in a *polarimeter*.
- Left (counter clockwise)
 = *levorotatory* (-)
- Right (clockwise
 = dextrorotatory (+)

- Extent of rotation is dependent on path length (of sample tube) and concentration
- Specific rotation ($\alpha_{\rm D}$) is measured at the "sodium D-line" (589.6 nm)

Circular Dichroism (CD) Spectroscopy

- CD measures optical rotation through the full spectrum of wavelengths (not just 589.6 nm)
- Many sampling options (small molecules, DNA, proteins, etc.)
- Example = Gold nanoparticles with achiral thioether ligands Au₃₈(SCH₂CH₂Ph)₂₄
- However, the arrangement of the thioethers on the gold is chiral

These types of chiral metals are used in heterogeneous catalysis and modern optics

Calculations of Enantiomeric Excess (EE)

Specific rotation (α_D) can be used to calculate reaction yields of enantiomeric ratios such as:

EE = [$\alpha_{\rm D}$] observed / [$\alpha_{\rm D}$] pure x 100

Data from polarimeter (observed) = α_{D} = + 1.42

Therefore:

EE = 1.42 / 3.82 x 100 = 37.2 %

EE vs. Optical Purity

Penicillin $\alpha_{D} = +233^{\circ}$ for pure enatiomer

% optical purity = $[\alpha_D]$ observed / $[\alpha_D]$ pure x 100

 $[\alpha_D]$ observed for the sample is +93.2° % optical purity for the sample is therefore 93.2°/233° x 100

The remaining 60% of the sample is racemic mixture of enantiomers: 30% (+) and 30% (-)

Therefore, the calculated optical purity of (+) Penicillin in the sample is 70%

Non-linear effects of asymmetry

Horeau Effect: There is an observed non- equivalence between optical purity calculated from optical rotation data and the mass of each enantiomer after their resolution. Some enantiomers have different intramolecular interactions (i.e. internal H-bonds) which cause them to have different "shapes" and thus rotate light non-equally.

Also: When a chiral substance undergoes a reaction, the reaction rate and the product ratio will depend upon the enantiomeric excess present in the starting material.

Tetrahedron **1973**, 29, 7, p 1055 *Angew Chem Int Ed* 1998, 37, 2922-2959

http://stoltz.caltech.edu/litmtg/mechclub/2008/JAELit06.pdf

Resolution of Chiral Compounds

- Enantiomers have identical physical properties and as such cannot be separated from one another
- Reaction of a racemic mixture with a pure enantiomer (or another compound) allows diastereomers to form (which can be separated due to distinct physical properties – boiling point, melting point, polarity)

Chiral Resolution: Creating Diastereomers from a Racemic Mixture of Enantiomers

Diastereomeric products

Relative and Absolute Configuration

- **Relative configuration** is determined for chiral carbons in relation their neighboring chiral carbons within the same molecule (this is usually a term used to describe chiral diastereomers)
- There is no simple correlation between R, S configuration and the sign or magnitude of optical rotation (+ or -)
- Why? light is absorbed differently by different functional groups, their relationship relative to one another determines sign/direction of optical rotation
- <u>This pairing</u> (for example + (R), (S), + (R,S) (S,R), etc...) is called the *absolute* configuration
- Absolute Configuration is usually determined by x-ray diffraction comparison of individual enantiomers

Absolute Configurations: S-glyceraldehyde and S-alanine

2⁵ (32) possible diastereomers!

Chiral Diastereomers

- Stereoisomers (spatial isomers) that are not enantiomers
- Contain 2 or more chiral carbons
 - In fact, all types of diastereomers (e.g. cis/trans isomers, E/Z isomers, rotamers, and conformers) *can* contain chiral carbons.
- 2ⁿ diastereomers when n = number of chiral carbons (e.g. 2 chiral centers = 2² = 4 diastereomers, 3 chiral centers = 2³ = 8 diastereomers, etc...)
- *Epimers* are chiral diastereomers that differ at only one chiral center (thus they are *not* enantiomers)
- Chiral diastereomers have different physical properties

Fisher Projections

- Must convert 3D structure to 2D and visualize where atoms are spatially oriented
- Used to assign configurations to more complex diastereomers (i.e. carbohydrates, peptides) with several contiguous chiral centers
- Most useful for linear compounds for which sawhorse projections can be drawn
- Also useful for rapidly drawing all possible diastereomers of a compound

Using Fisher projections to draw all possible diasteromers of threose

(2*S*,3*S*)-2,3,4-trihydroxybutanal

(2R,3R)-2,3,4-trihydroxybutanal

(2R,3S)-2,3,4-trihydroxybutanal (2S,3R)-2,3,4-trihydroxybutanal

Fisher projection

Meso compounds

• Have chiral centers but are achiral molecules

Internal plane of (2*R*,3*R*)-2,3-dihydrox
 symmetry
 L (+) tartaria

• Distinct physical properties from their other diastereomers

Optically inactive

• Are identical to one another

Spotting Meso Compounds

• Look for:

indistinguishable end groups (e.g. both sides of molecule have COOH functionality)

• Rotate:

around same bond we eyed for Fisher Projections

• Must have:

Internal plane of symmetry (when in doubt, make a model)

(2*R*,3*S*)-2,3-dihydroxysuccinic acid (2*R*,3*S*)-2,3-dihydroxysuccinic acid

meso tartaric acid

Chirality at N, P, S

HO

- Trivalent nitrogen is tetrahedral with H₃C² its lone pair electrons acting as the fourth (lowest ranked) "substituent"
- As such, it is chiral in principal, but not in practice because it often interconverts too rapidly to isolate individual enantiomers
- Trivalent phosphorus (phosphines) has similar chirality, and interconvert slower – allowing for isolation of R and S enantiomers
- Divalent sulfur compounds (thiols, sulfides, disulfides) are achiral but trivalent sulfur compounds (sulfonium salts = R₃S⁺) are chiral and interconvert slowly enough to be isolated.

OH

NH₂

(S)-S-adenosylmethionine (SAM)

 HO^{W}

Prochirality

- A molecule is *prochiral* if it can be converted from achiral to chiral in a single chemical step
- The enantiomer that is produced depends on the face of the planar carbonyl group that undergoes reaction (*Re* = CW and *Si* = CCW faces)
- Prochirality centers can also be sp³ hybridized (pro-S substituent replacement leads to R chirality and pro-S substituent replacement leads to S chirality)

Homework

Watch Video on Stereochemistry:

https://www.khanacademy.org/science/organic-chemistry/stereochemistry-topic/opticalactivity/v/cahn-ingold-prelog-system-for-naming-enantiomers

Problems Chapter 5:

In text: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 20, 21, 22, 23

End of chapter: 31, 36, 37, 39, 40, 43, 52, 54, 68, 69, 71, 72, 75