Chemistry of Alkenes

Outline of Topics and Reactions

- Carbocation Structure and Stability
 - Markovnikov's Rule
 - Hammond postulate
 - Carbocation rearrangements
 - Redox Definitions for Organic Chemistry
- Preparation of Alkenes via Elimination
 - Dehydrohalogenation
 - Dehydration
- Reactions of Alkenes
 - Halogenation of alkenes with X₂
 - Halohydrins from HOX (hypohalous acids)
 - Hydration (oxymercuration, hydroboration)
 - Reductive hydrogenation
 - Oxidation to epoxides and alcohols
 - Addition of carbenes (cyclopropane synthesis)
- Stereochemical Considerations

Carbocation stability

 Thermodynamic measurements (i.e. dissociation enthalpies of alkyl chlorides) have been used to confirm carbocation stabilities

Carbocation stability

- Increased substitution leads to greater carbocation stability
 - Inductive effects: groups larger than H can more easily shift electron density to stabilize +ve charge
 - Hyperconjugation: Stability arises from interaction of ρ atomic (or π molecular) orbitals with C-H σ bonds on neighboring atoms. The more alkyl groups, the more possibilities for hyperconjugation to occur

Markovnikov's Rule: "Them that has 'em gets 'em"

- In the addition of HX to an alkene, the H attaches to the carbon atom with fewer alkyl substituents and the X attaches to the carbon with more alkyl substituents
- The most highly substituted carbocation is formed as the intermediate

Markovnikov addition of HBr

Product mixtures

 When both double bonded carbon atoms have the same degree of substitution, a mixture of addition products results

The Hammond Postulate

- The **structure** of the transition state resembles the structure of the nearest stable species.
 - Transition states for endergonic steps structurally resemble the products
 - Transition states for exergonic steps structurally resemble the reactants

Implications of the Hammond Postulate for electrophilic substitution reactions

Mechanistic evidence for electrophilic addition reactions: Carbocation rearrangements

- F.C. Whitmore (Penn State) 1930s
- Product mixtures also resulting when not expected
- Carbocation intermediate undergoes rearrangement to form a more stable species

Hydride Shift

- Rearrangement reaction
- Hydride ion (H:) moves over 1 carbon atom
- Formation of a more stable (3°) carbocation

$$\begin{array}{c} + H - CI \\ + CI \\ \hline \\ + CI \\ + CI \\ \hline \\ + CI \\$$

Alkyl Shift

- Rearrangement reaction
- Methide ion (CH₃:-) moves over 1 carbon atom
- Formation of a more stable (3°) carbocation

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\$$

Alkene preparation via elimination

- Elimination is opposite of addition reaction
- Dehydrohalogenation (laboratory synthesis)
- Dehydration (lab or biological systems)

Dehydrohalogenation

- Loss of HX from an alkyl halide
- Base catalyzed
- Three mechanisms (E1, E2, E1cB) differ in the rates of C-H and C-X bond breaking
- Zaitsev's Rule: Base-induced eliminations give most substituted alkene product

Dehydration

- Loss of H₂O from an alcohol
- Often acid catalyzed, with H₂O participating as a base
- THF = moderately polar, aprotic solvent
- In biological systems these occur to form α , β unsaturated carbonyl compounds

$$\begin{array}{c} OH \\ H \end{array} \begin{array}{c} H_2SO_4, H_2O \\ \hline THF, 50^{\circ}C \end{array} \begin{array}{c} + H_2O \end{array}$$

Halogenation

Syn vs Anti Addition Stereochemistry

- Like cis and trans for single bonds
- Used to describe additions of X₂, HX, H₂O, etc.

Halogenation of Alkenes to form 1,2-dihalides

- Halogens Cl₂ and Br₂ rapidly add to alkenes
- Heterolytic (non-radical) process
- Used to make PVC
- Electrophilic reaction mechanism does not explain 100% trans stereochemical outcome
- Anti-stereochemistry = Halogen atoms add from opposite faces of the double bond (top and bottom)
- Halonium (X⁺) intermediate

Carbocation vs. Bromonium ion: Effects on stereoselectivity

Planar carbocation

- Attack by Br- possible from either face of sp² carbon
- Results in a mixture of syn and anti products

Tetrahedral bromonium ion

- Attack by Br- only possible from opposite face of sp³ carbon
- Results in 100% anti product

Halogenation in nature

Chlorinated monoterpene isolated from red alga

Halomon - an anticancer polyhalogenated monoterpene (J. Faulkner, 1974)

Portieria honemannii

- Exclusively marine derived
- Enzymes use H₂O₂ to oxidize Br- and Cl- to Br+ and Cl+ ions
- 1 electrophilic addition of Br⁺ and 1 of Cl⁺
- 1 nucleophilic additions of Br and 1 of Cl

Halohydrin formation

Markovnikov addition of H₂O

- OH to most substituted carbon
- H to least substituted C
- "Them that has 'em gets 'em" still applies
- Regiochemistry

Halohydrins from alkenes: Addition of H-OX

- Electrophilic addition reaction
- Hypohalous acids (HO-Cl and HO-Br)
- 1, 2-haloalcohol (aka halohydrin) products
- Alkene reacts with X₂ in H₂O
- H₂O outcompetes X⁻ as nucleophile
- Halonium ion intermediate gives anti product

$$X_2$$
 H_2O
 Br
 OH
 $+$ HX

Bromohydrin Formation in Practice

- In practice, few alkenes are water soluble
- Unsymmetrical alkenes give Markovnikov products
- Anti arrangement of Br and OH
- Bromoperoxidase enzymes also used
- Common solvents used = aqueous DMSO or acetone
- N-bromosuccinimide (NBS)
 - stable, easily handled, slowly decomposes in water to give Br₂ at a controlled rate
 - NBS reactions also give trans products due to bromonium intermediate

Hydration

Acid-catalyzed alkene hydration

- Simplest, least expensive way to produce alcohols
- Best performed in large-scale industry setting
- Little use in lab setting due to high temps/strong acid conditions (H₂SO₄ also works)
- 300,000 tons of ethanol produced yearly from ethylene this way

$$H_{2}O$$
 $H_{3}PO_{4}$ cat $H_{2}O$ $H_{3}PO_{4}$ cat $H_{2}O$

Oxymercuration/Demercuration

- Suitable for lab-scale syntheses of alcohols
- Electrophilic addition of alkene to Hg²⁺
- Organomercury intermediate (oxidation)
- Sodium borohydride (NaBH₄) is a reducing agent
- No carbocation rearrangements
- Can be *syn* or *anti* addition depending on borohydride complex
- Follows Markovnikov's rule for addition of water:
 (OH to most substituted carbon, H to least substituted C)

1-methylcyclooctene

Mechanism of Oxymercuration/Demercuration

Overall:

- 1. Markovnikov addition of H₂O,
- 2. Borohydride reduction be *syn* or *anti* (molecule specific)

Hydroboration/Oxidation

- 1957 discovered by H.C. Brown (1979 Nobel Laureate)
- Organoborane intermediate
- Anti-Markovnikov (regiochemistry)
 - OH adds to *least* substituted carbon of alkene
- Syn hydration (stereochemistry)
 - Hand OH addition are cis to one another

$$H_3C$$
 H_3C
 H_3C

Step 1: Hydroboration

- Borane is a reactive Lewis acid with only 6 electrons in valence shell
- Forms stable complex with Lewis basic solvents (ethers, THF, for example) to complete octet
- Three equivalents of alkene readily replaces the solvent complex to form trialkylborane

Hydroboration mechanism

Borane with vacant *p* orbital

4 atom concerted transition state

Step 2: Oxidation

- Oxidation occurs with hydrogen peroxide (H₂O₂) in aqueous base
- Three equivalents of alcohol produced from one equivalent of borane

Oxidation mechanism

Overall Hydroboration/Oxidation reaction is anti-Markovnikov with syn addition of water

Hydroboration: Anti-Markovnikov and syn addition of Hydrogen and Boron

Oxidation: Boron group is replaced by OH, configuration is retained

Comparison of Alkene Hydration Procedures

- Acid-catalyzed hydrolysis: Markovnikov addition, reversible, rearrangements possible
- Oxymercuration/Demercuration:
 Markovnikov addition, syn or anti addition depending on NaBH₄ complex exact circumstances, no rearrangements possible
- Hydroboration/Oxidation: Anti-Markovnikov, syn addition OF H₂O no rearrangements possible

Hydrogenation (aka alkene reduction)

Review of Organic Reduction

- General chemistry definition of reduction = gain of electrons
- Organic chemistry definition of reduction = gain of electron density by carbon
- bond *formation* with *less* electronegative atom (usually H)
- or by bond *breaking* with a *more* electronegative atom (usually N, O or halogen)

Reduction via Hydrogenation

- Reduction = gain of electron density by a carbon atom
- H₂, formic acid, borohydride and aluminum hydride reagents, NADPH are common reducing agents
- Metal catalysts are often required (e.g. Pd, Pt, Ni, Cu, with H₂ and formic acid)
- Heterogeneous catalysis: Occurs a a particle (e.g. a carbon support like Pd/C)
- Syn stereochemistry

$$\begin{array}{c} & \\ & \\ \hline \\ PtO_2 \text{ in } CH_3CO_2H \end{array}$$

Catalytic Hydrogenation

- Alkenes more reactive than other functional groups
- Aldehydes, esters, ketones and nitriles survive, but can be reduced at harsher conditions (temp, pressure)

$$\begin{array}{c} & & & \\ & &$$

Catalytic hydrogenation mechanism

Sensitivity to steric environment

"Incomplete" hydrogenation gives rise to trans-fats

- Hydrogenation performed with 2-step Ni catalyst + heat
- Heat or incomplete interaction with catalyst will allow partially broken double bond to reform
- Reformation thermodynamically and geometrically favors the *trans*, rather than *cis*, geometry. (e.g. *trans* butene is 2.8 kJ/mol more stable than *cis*-)

Hydrogenation Process
Patented 1903
Heart Disease was basically
an old person's disease in 1900
basically unknown of in 1900

Heart Disease First Written Up As A Medical Condition By Medical Doctor in 1921

Diagnosed heart disease has increased 5,850% from 1910 to 2005 1,000 in 1910 to 58.5 million in 2005

Oxidation of Alkenes

Organic *Oxidation*

- General Chemistry definition of oxidation = loss of one or more electrons by an atom
- Organic Chemistry definition = loss of electron density by carbon
- bond *formation* between C and *more* electronegative atom (O, N, Halogen)
- bond breaking between between C and a less electronegative atom (usually H)

Examples of Organic Redox Reactions

Preparation of Epoxides

- Laboratory synthesis: Alkenes are oxidized to give epoxides (a.k.a oxiranes,)
- Epoxides cyclic ethers (3 membered ring)
- Mild oxidants (NaOCl, peroxides or peroxyacids) used

Epoxide Preparation with mCPBA

- m-chloroperoxy-benzoic acid (mCPBA) is a "per-acid"
- O-O bond is weak (138 kJ/mol)
- mCPBA always transfers oxygen atom with syn stereochemistry
- One step mechanism with no intermediates

Preparation of Epoxides *via*Halohydrins

- Electrophilic addition of H-OX to alkenes
- Two-step mechanism, halohydrin intermediate
- Halohydrin is treated with base, H-X is eliminated, epoxide is formed

$$CI_2$$
 H_2O
 OH
 $NaOH$
 H_2O

Epoxides in Nature

Periplanone B – female cockroach hormone (<< 1µg in nature)
Okada et al. Journal of Chemical Ecology

1990, Nicolauo K.C. "Classics in Total Synthesis" 1996; W Clark Still (1979)

Preparation of Diols

Preparation of Diols

- Diols (a.k.a. 1,2-dialcohols or glycols)
- Acid-catalyzed ring opening of epoxides produces trans diols
- Osmium tetroxide produces cis diols from alkenes

Acid catalyzed epoxide ring opening

- Acid catalyzed
- Water is nucleophile
- Analogous to alkene halogenation (oxiranium intermediate similar to halonium intermediate)
- Produces trans-diols

trans 2,3-butanediol

Synthesis of Diols Directly from Alkenes

- Osmium tetroxide (OsO₄) = rare, expensive, toxic
- Intermediate is cyclic osmate ester, not epoxide
- Diols produced are cis
- Cleave with aqueous sodium bisulfite (NaHSO₃)
- Stoichiometric use of N-methylmorpholine N-oxide (NMO) as co-oxidant makes OsO₄ catalytic (save \$)

Ethylene Glycol: Anti-Freeze, Anti-Boil

Industrial production = 10M tons/yr/worldwide

Oxidative Cleavage of Alkenes

Oxidative Cleavage of Alkenes to Carbonyl Compounds

- Powerful oxidizing agents required to break C=C bond
- Ozonolysis (O₃)
- Potassium Permanganate (KMnO₄)
- Periodic Acid (HIO₄)
- Lead tetraacetate (Pb(OAc)₄)

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Ozonolysis

- Ozone (O₃) is generated by passing O₂ through an electrical discharge
- O₃ adds rapidly to alkene at low temp to give cyclic monolozide which spontaneously rearranges to ozonide
- Ozonide are not easily isolated and thus reduced in situ with Zn/HOAc
- Net result is two new carbonyls on two original alkene carbon atoms

Ozonolysis contd.

etc.

KMnO₄ Oxidation

- Strong oxidant, seldom used outside of TLC staining
- Works in neutral or acidic solution
- Zero H on alkene = ketone produced
- One H on alkene = carboxylic acid produced
- Two H's on alkene = CO₂ produced

Oxidation of Diols with Periodic Acid

- Cyclic or open chain cis diols OK
- Mechanism involves cyclic periodate intermediate
- Diols in a ring give 1 open chain dicarbonyl product
- Diols in an open chain give 2 separate dicarbonyl products

OH
$$HIO_4$$
 HIO_4 HIO_4 HIO_4 H_2O/THF H_2O/THF

Oxidation of conformational fixed *trans* diols

Preparation of cyclopropanes

Carbene chemistry

- Carbenes are neutral molecules, with 6 e-s in valence shell
- Highly reactive, Non-isolable
- Electron deficient, thus act as electrophiles
- React with nucleophilic C=C bonds

Carbene Formation and Use

- Treat CHCl₃ with strong base (KOH)
- Makes trichloromethanide anion (CCl₃:⁻)
- The anion expels Cl⁻ to give neutral dichlorocarbene (CCl₂:)
- Generate dichlorocarbene in situ with an alkene
- Stereospecific adds to one face of alkene
 - cis alkene gives cis dichlorocyclopropane
 - trans alkene gives trans dichlorocyclopropane

Simmons-Smith Reaction

- "Named reaction"
- Developed by chemists at DuPont
- Carbenoid (not a free carbene, rather a metalcomplexed reagent)
- Cycloaddition reaction

$$\begin{array}{c} \text{CH}_2 I_2 \\ \text{diiodomethane} \end{array} \qquad \begin{array}{c} \text{IH}_2 \text{C} - \text{ZnI} = ":CH}_2" \\ \\ \text{H}_2 \text{C} - \text{Zn$$

HW Problems

Chapter 8:

In Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17

End of Chapter: 26, 27, 28, 35, 38